File size: 9,564 Bytes
0877c51 c4c7a5a a8678a6 0877c51 7c8fb46 0877c51 c4c7a5a a4c1e96 d56c08f a4c1e96 0877c51 d56c08f dc6d34d d071e42 d56c08f 9b6142b 0877c51 503e5c1 0877c51 2e79f16 0877c51 503e5c1 0877c51 2e79f16 0877c51 c4c7a5a 0877c51 d56c08f 0877c51 2e79f16 0877c51 d56c08f 2e79f16 d56c08f 0877c51 7c8fb46 d56c08f 7c8fb46 0877c51 d56c08f 0877c51 d56c08f 0877c51 7c8fb46 0877c51 7c8fb46 0877c51 2e79f16 530abb4 2e79f16 0877c51 2e79f16 0877c51 d56c08f 0877c51 2e79f16 0877c51 2e79f16 0877c51 d56c08f 2e79f16 0877c51 2e79f16 0877c51 2e79f16 0877c51 530abb4 0877c51 2e79f16 0877c51 d56c08f 0877c51 2e79f16 0877c51 ba4b2f5 0877c51 d56c08f 0877c51 7c8fb46 0877c51 d56c08f 0877c51 7c8fb46 0877c51 c4c7a5a 0877c51 c4c7a5a d56c08f 0877c51 d56c08f 0877c51 c4c7a5a 0877c51 ce929d0 d191426 0877c51 d191426 0877c51 ce929d0 0877c51 ce929d0 0877c51 222699e ce929d0 503e5c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import gc
import os
import torch
import torch.nn as nn
import torch.optim as optim
import tempfile
import gradio as gr
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModel
from flashpack import FlashPackMixin
from huggingface_hub import Repository
from typing import Tuple
# ============================================================
# 🖥 Device setup (CPU-only)
# ============================================================
device = torch.device("cpu")
torch.set_num_threads(4)
print(f"🔧 Using device: {device} (CPU-only)")
# ============================================================
# 1️⃣ FlashPack model with better hidden layers
# ============================================================
class GemmaTrainer(nn.Module, FlashPackMixin):
def __init__(self, input_dim: int, hidden_dim: int = 1024, output_dim: int = 1536):
super().__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, output_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x
# ============================================================
# 2️⃣ Encoder using mean+max pooling (for richer embeddings)
# ============================================================
def build_encoder(model_name="gpt2", max_length: int = 128):
tokenizer = AutoTokenizer.from_pretrained(model_name)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
embed_model = AutoModel.from_pretrained(model_name).to(device)
embed_model.eval()
@torch.no_grad()
def encode(prompt: str) -> torch.Tensor:
inputs = tokenizer(prompt, return_tensors="pt", truncation=True,
padding="max_length", max_length=max_length).to(device)
last_hidden = embed_model(**inputs).last_hidden_state
mean_pool = last_hidden.mean(dim=1)
max_pool, _ = last_hidden.max(dim=1)
return torch.cat([mean_pool, max_pool], dim=1).cpu() # doubled embedding
return tokenizer, embed_model, encode
# ============================================================
# 3️⃣ Push FlashPack model to Hugging Face
# ============================================================
def push_flashpack_model_to_hf(model, hf_repo: str):
logs = []
with tempfile.TemporaryDirectory() as tmp_dir:
logs.append(f"📂 Temporary directory: {tmp_dir}")
repo = Repository(local_dir=tmp_dir, clone_from=hf_repo, use_auth_token=True)
pack_path = os.path.join(tmp_dir, "model.flashpack")
model.save_flashpack(pack_path, target_dtype=torch.float32)
readme_path = os.path.join(tmp_dir, "README.md")
with open(readme_path, "w") as f:
f.write("# FlashPack Model\nThis repo contains a FlashPack model.")
repo.push_to_hub()
logs.append(f"✅ Model pushed to HF: {hf_repo}")
return logs
# ============================================================
# 4️⃣ Train FlashPack model
# ============================================================
def train_flashpack_model(
dataset_name: str = "rahul7star/prompt-enhancer-dataset",
max_encode: int = 1000,
hidden_dim: int = 1024,
push_to_hub: bool = True,
hf_repo: str = "rahul7star/FlashPack"
) -> Tuple[GemmaTrainer, object, object, object, torch.Tensor]:
print("📦 Loading dataset...")
dataset = load_dataset(dataset_name, split="train")
limit = min(max_encode, len(dataset))
dataset = dataset.select(range(limit))
print(f"⚡ Using {len(dataset)} prompts for training")
tokenizer, embed_model, encode_fn = build_encoder("gpt2", max_length=128)
# Encode prompts
short_list, long_list = [], []
for i, item in enumerate(dataset):
short_list.append(encode_fn(item["short_prompt"]))
long_list.append(encode_fn(item["long_prompt"]))
if (i+1) % 50 == 0 or (i+1) == len(dataset):
print(f" → Encoded {i+1}/{limit} prompts")
gc.collect()
short_embeddings = torch.vstack(short_list)
long_embeddings = torch.vstack(long_list)
print(f"✅ Encoded embeddings shape: short {short_embeddings.shape}, long {long_embeddings.shape}")
input_dim = short_embeddings.shape[1] # should match concatenated mean+max
output_dim = long_embeddings.shape[1]
model = GemmaTrainer(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim).to(device)
criterion = nn.CosineSimilarity(dim=1)
optimizer = optim.Adam(model.parameters(), lr=1e-3)
max_epochs = 50
batch_size = 32
n = short_embeddings.shape[0]
print("🚀 Training model...")
for epoch in range(max_epochs):
model.train()
epoch_loss = 0.0
perm = torch.randperm(n)
for start in range(0, n, batch_size):
idx = perm[start:start+batch_size]
inputs = short_embeddings[idx].to(device)
targets = long_embeddings[idx].to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = 1 - criterion(outputs, targets).mean()
loss.backward()
optimizer.step()
epoch_loss += loss.item() * inputs.size(0)
epoch_loss /= n
if epoch % 5 == 0 or epoch == max_epochs-1:
print(f"Epoch {epoch+1}/{max_epochs}, Loss={epoch_loss:.6f}")
print("✅ Training finished!")
if push_to_hub:
logs = push_flashpack_model_to_hf(model, hf_repo)
for log in logs:
print(log)
return model, dataset, embed_model, tokenizer, long_embeddings
# ============================================================
# 5️⃣ Load or train model
# ============================================================
def get_flashpack_model(hf_repo="rahul7star/FlashPack"):
try:
print(f"🔁 Attempting to load FlashPack model from {hf_repo}")
model = GemmaTrainer.from_flashpack(hf_repo)
model.eval()
tokenizer, embed_model, encode_fn = build_encoder("gpt2", max_length=128)
return model, tokenizer, embed_model
except Exception as e:
print(f"⚠️ Load failed: {e}")
print("⏬ Training a new FlashPack model locally...")
model, dataset, embed_model, tokenizer, long_embeddings = train_flashpack_model()
push_flashpack_model_to_hf(model, hf_repo)
return model, tokenizer, embed_model, dataset, long_embeddings
# ============================================================
# 6️⃣ Load or train
# ============================================================
model, tokenizer, embed_model, dataset, long_embeddings = get_flashpack_model()
# ============================================================
# 7️⃣ Inference helpers
# ============================================================
@torch.no_grad()
def encode_for_inference(prompt: str) -> torch.Tensor:
inputs = tokenizer(prompt, return_tensors="pt", truncation=True,
padding="max_length", max_length=128).to(device)
last_hidden = embed_model(**inputs).last_hidden_state
mean_pool = last_hidden.mean(dim=1)
max_pool, _ = last_hidden.max(dim=1)
return torch.cat([mean_pool, max_pool], dim=1).cpu()
def enhance_prompt(user_prompt: str, temperature: float, max_tokens: int, chat_history):
chat_history = chat_history or []
short_emb = encode_for_inference(user_prompt)
mapped = model(short_emb.to(device)).cpu()
sims = (long_embeddings @ mapped.t()).squeeze(1)
long_norms = long_embeddings.norm(dim=1)
mapped_norm = mapped.norm()
sims = sims / (long_norms * (mapped_norm + 1e-12))
best_idx = int(sims.argmax().item())
enhanced_prompt = dataset[best_idx]["long_prompt"]
chat_history.append({"role": "user", "content": user_prompt})
chat_history.append({"role": "assistant", "content": enhanced_prompt})
return chat_history
# ============================================================
# 8️⃣ Gradio UI
# ============================================================
with gr.Blocks(title="Prompt Enhancer – FlashPack (CPU)", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# ✨ Prompt Enhancer (FlashPack mapper)
Enter a short prompt, and the model will **expand it with details and creative context**.
(CPU-only mode.)
"""
)
with gr.Row():
chatbot = gr.Chatbot(height=400, label="Enhanced Prompts", type="messages")
with gr.Column(scale=1):
user_prompt = gr.Textbox(placeholder="Enter a short prompt...", label="Your Prompt", lines=3)
temperature = gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Temperature")
max_tokens = gr.Slider(32, 256, value=128, step=16, label="Max Tokens")
send_btn = gr.Button("🚀 Enhance Prompt", variant="primary")
clear_btn = gr.Button("🧹 Clear Chat")
send_btn.click(enhance_prompt, [user_prompt, temperature, max_tokens, chatbot], chatbot)
user_prompt.submit(enhance_prompt, [user_prompt, temperature, max_tokens, chatbot], chatbot)
clear_btn.click(lambda: [], None, chatbot)
# ============================================================
# 9️⃣ Launch
# ============================================================
if __name__ == "__main__":
demo.launch(show_error=True) |