Update app_flash.py
Browse files- app_flash.py +171 -69
app_flash.py
CHANGED
|
@@ -1,146 +1,245 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
| 4 |
import torch.optim as optim
|
| 5 |
-
from flashpack import FlashPackMixin
|
| 6 |
from datasets import load_dataset
|
| 7 |
import gradio as gr
|
| 8 |
from transformers import AutoTokenizer, AutoModel
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# ============================================================
|
| 11 |
-
#
|
| 12 |
# ============================================================
|
| 13 |
-
device =
|
| 14 |
-
|
|
|
|
| 15 |
|
| 16 |
# ============================================================
|
| 17 |
# 1️⃣ Define FlashPack model
|
| 18 |
# ============================================================
|
| 19 |
class GemmaTrainer(nn.Module, FlashPackMixin):
|
| 20 |
-
def __init__(self, input_dim=768, hidden_dim=1024, output_dim=768):
|
| 21 |
super().__init__()
|
| 22 |
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
| 23 |
self.relu = nn.ReLU()
|
| 24 |
self.fc2 = nn.Linear(hidden_dim, output_dim)
|
| 25 |
|
| 26 |
-
def forward(self, x):
|
| 27 |
x = self.fc1(x)
|
| 28 |
x = self.relu(x)
|
| 29 |
x = self.fc2(x)
|
| 30 |
return x
|
| 31 |
|
| 32 |
-
|
| 33 |
# ============================================================
|
| 34 |
-
# 2️⃣
|
| 35 |
# ============================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
# Load dataset
|
| 39 |
-
print("📦 Loading dataset...")
|
| 40 |
-
dataset = load_dataset("gokaygokay/prompt-enhancer-dataset", split="train")
|
| 41 |
-
|
| 42 |
-
# Tokenizer setup
|
| 43 |
-
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 44 |
-
tokenizer.pad_token = tokenizer.eos_token # ✅ Fix padding issue
|
| 45 |
-
|
| 46 |
-
# Base embedding model
|
| 47 |
-
embed_model = AutoModel.from_pretrained("gpt2").to(device)
|
| 48 |
embed_model.eval()
|
| 49 |
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
inputs = tokenizer(
|
| 52 |
prompt,
|
| 53 |
return_tensors="pt",
|
| 54 |
truncation=True,
|
| 55 |
padding="max_length",
|
| 56 |
-
max_length=
|
| 57 |
).to(device)
|
| 58 |
-
with torch.no_grad():
|
| 59 |
-
return embed_model(**inputs).last_hidden_state.mean(dim=1)
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
model = GemmaTrainer(
|
| 69 |
input_dim=short_embeddings.shape[1],
|
| 70 |
-
|
| 71 |
-
|
|
|
|
| 72 |
|
|
|
|
| 73 |
criterion = nn.MSELoss()
|
| 74 |
optimizer = optim.Adam(model.parameters(), lr=1e-3)
|
|
|
|
| 75 |
max_epochs = 500
|
| 76 |
tolerance = 1e-4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
if
|
| 85 |
-
print(f"✅ Converged at epoch {epoch
|
| 86 |
break
|
| 87 |
-
if (epoch + 1) % 50 == 0:
|
| 88 |
-
print(f"Epoch {epoch+1}, Loss={loss.item():.6f}")
|
| 89 |
|
| 90 |
-
# Save to
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
|
|
|
| 95 |
return model, dataset, embed_model, tokenizer, long_embeddings
|
| 96 |
|
| 97 |
-
|
| 98 |
# ============================================================
|
| 99 |
-
#
|
| 100 |
# ============================================================
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
model.eval()
|
| 103 |
|
| 104 |
-
#
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
def encode_prompt(prompt):
|
| 108 |
inputs = tokenizer(
|
| 109 |
prompt,
|
| 110 |
return_tensors="pt",
|
| 111 |
truncation=True,
|
| 112 |
padding="max_length",
|
| 113 |
-
max_length=32
|
| 114 |
).to(device)
|
| 115 |
-
|
| 116 |
-
return embed_model(**inputs).last_hidden_state.mean(dim=1)
|
| 117 |
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
| 119 |
chat_history = chat_history or []
|
| 120 |
-
short_emb = encode_prompt(user_prompt)
|
| 121 |
|
|
|
|
|
|
|
| 122 |
with torch.no_grad():
|
| 123 |
-
|
| 124 |
|
| 125 |
-
#
|
| 126 |
cos = nn.CosineSimilarity(dim=1)
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
enhanced_prompt = dataset[best_idx]["long_prompt"]
|
| 130 |
|
| 131 |
chat_history.append({"role": "user", "content": user_prompt})
|
| 132 |
chat_history.append({"role": "assistant", "content": enhanced_prompt})
|
| 133 |
return chat_history
|
| 134 |
|
| 135 |
-
|
| 136 |
# ============================================================
|
| 137 |
-
#
|
| 138 |
# ============================================================
|
| 139 |
-
with gr.Blocks(title="Prompt Enhancer –
|
| 140 |
gr.Markdown(
|
| 141 |
"""
|
| 142 |
-
# ✨ Prompt Enhancer (
|
| 143 |
-
Enter a short prompt, and the model will **expand it with details and creative context
|
|
|
|
| 144 |
"""
|
| 145 |
)
|
| 146 |
|
|
@@ -165,10 +264,13 @@ with gr.Blocks(title="Prompt Enhancer – Gemma 3 270M", theme=gr.themes.Soft())
|
|
| 165 |
"""
|
| 166 |
---
|
| 167 |
💡 **Tips:**
|
| 168 |
-
-
|
| 169 |
-
- Increase *Temperature* for more creative
|
| 170 |
"""
|
| 171 |
)
|
| 172 |
|
|
|
|
|
|
|
|
|
|
| 173 |
if __name__ == "__main__":
|
| 174 |
demo.launch(show_error=True)
|
|
|
|
| 1 |
+
# prompt_enhancer_flashpack_cpu.py
|
| 2 |
+
import gc
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
| 5 |
import torch.optim as optim
|
|
|
|
| 6 |
from datasets import load_dataset
|
| 7 |
import gradio as gr
|
| 8 |
from transformers import AutoTokenizer, AutoModel
|
| 9 |
+
from flashpack import FlashPackMixin # keep if your mixin provides save_flashpack
|
| 10 |
+
from typing import Tuple
|
| 11 |
|
| 12 |
# ============================================================
|
| 13 |
+
# 🖥 Force CPU mode (safe for HF Spaces / Kaggle)
|
| 14 |
# ============================================================
|
| 15 |
+
device = torch.device("cpu")
|
| 16 |
+
torch.set_num_threads(4) # reduce CPU contention in shared environments
|
| 17 |
+
print(f"🔧 Forcing device: {device} (CPU-only mode)")
|
| 18 |
|
| 19 |
# ============================================================
|
| 20 |
# 1️⃣ Define FlashPack model
|
| 21 |
# ============================================================
|
| 22 |
class GemmaTrainer(nn.Module, FlashPackMixin):
|
| 23 |
+
def __init__(self, input_dim: int = 768, hidden_dim: int = 1024, output_dim: int = 768):
|
| 24 |
super().__init__()
|
| 25 |
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
| 26 |
self.relu = nn.ReLU()
|
| 27 |
self.fc2 = nn.Linear(hidden_dim, output_dim)
|
| 28 |
|
| 29 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 30 |
x = self.fc1(x)
|
| 31 |
x = self.relu(x)
|
| 32 |
x = self.fc2(x)
|
| 33 |
return x
|
| 34 |
|
|
|
|
| 35 |
# ============================================================
|
| 36 |
+
# 2️⃣ Utility: encode prompts (CPU-friendly)
|
| 37 |
# ============================================================
|
| 38 |
+
def build_encoder(model_name="gpt2", max_length: int = 32):
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 40 |
+
# Some GPT2 tokenizers have no pad token — set eos as pad
|
| 41 |
+
if tokenizer.pad_token is None:
|
| 42 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 43 |
|
| 44 |
+
embed_model = AutoModel.from_pretrained(model_name).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
embed_model.eval()
|
| 46 |
|
| 47 |
+
@torch.no_grad()
|
| 48 |
+
def encode(prompt: str) -> torch.Tensor:
|
| 49 |
+
"""
|
| 50 |
+
Encodes a single prompt and returns a CPU tensor of shape (1, hidden_size).
|
| 51 |
+
Always returns a CPU tensor to avoid device juggling in downstream code.
|
| 52 |
+
"""
|
| 53 |
inputs = tokenizer(
|
| 54 |
prompt,
|
| 55 |
return_tensors="pt",
|
| 56 |
truncation=True,
|
| 57 |
padding="max_length",
|
| 58 |
+
max_length=max_length,
|
| 59 |
).to(device)
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
outputs = embed_model(**inputs).last_hidden_state.mean(dim=1) # (1, hidden)
|
| 62 |
+
return outputs.cpu()
|
| 63 |
+
|
| 64 |
+
return tokenizer, embed_model, encode
|
| 65 |
+
|
| 66 |
+
# ============================================================
|
| 67 |
+
# 3️⃣ Train FlashPack mapping (CPU-optimized)
|
| 68 |
+
# ============================================================
|
| 69 |
+
def train_flashpack_model(
|
| 70 |
+
dataset_name: str = "gokaygokay/prompt-enhancer-dataset",
|
| 71 |
+
model_name: str = "gpt2",
|
| 72 |
+
max_length: int = 32,
|
| 73 |
+
subset_limit: int | None = None, # set to int to train on subset for quick runs
|
| 74 |
+
push_to_hub: bool = True,
|
| 75 |
+
hf_repo: str = "rahul7star/FlashPack",
|
| 76 |
+
) -> Tuple[GemmaTrainer, object, AutoModel, AutoTokenizer, torch.Tensor]:
|
| 77 |
+
"""
|
| 78 |
+
Returns: (trained_model, dataset, embed_model, tokenizer, long_embeddings)
|
| 79 |
+
All tensors remain on CPU to be safe in CPU-only environments.
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
# 1) Load dataset
|
| 83 |
+
print("📦 Loading dataset...")
|
| 84 |
+
dataset = load_dataset(dataset_name, split="train")
|
| 85 |
+
|
| 86 |
+
if subset_limit is not None and subset_limit > 0:
|
| 87 |
+
print(f"⚠️ Using subset of dataset: first {subset_limit} examples for fast iteration")
|
| 88 |
+
dataset = dataset.select(range(min(subset_limit, len(dataset))))
|
| 89 |
+
|
| 90 |
+
# 2) Build tokenizer + encoder
|
| 91 |
+
print("🔧 Setting up tokenizer & encoder...")
|
| 92 |
+
tokenizer, embed_model, encode_fn = build_encoder(model_name=model_name, max_length=max_length)
|
| 93 |
|
| 94 |
+
# 3) Encode dataset in a memory-friendly loop (returns CPU tensors)
|
| 95 |
+
print("🔢 Encoding dataset into embeddings (CPU-friendly)...")
|
| 96 |
+
short_list = []
|
| 97 |
+
long_list = []
|
| 98 |
+
for i, item in enumerate(dataset):
|
| 99 |
+
short_list.append(encode_fn(item["short_prompt"]))
|
| 100 |
+
long_list.append(encode_fn(item["long_prompt"]))
|
| 101 |
+
|
| 102 |
+
# logging & GC every 100 items
|
| 103 |
+
if (i + 1) % 100 == 0 or (i + 1) == len(dataset):
|
| 104 |
+
print(f" → Encoded {i+1}/{len(dataset)} prompts")
|
| 105 |
+
gc.collect()
|
| 106 |
+
|
| 107 |
+
# Stack to single tensors on CPU
|
| 108 |
+
short_embeddings = torch.vstack(short_list) # shape (N, hidden)
|
| 109 |
+
long_embeddings = torch.vstack(long_list)
|
| 110 |
+
print(f"✅ Finished encoding: {short_embeddings.shape[0]} pairs, dim={short_embeddings.shape[1]}")
|
| 111 |
+
|
| 112 |
+
# 4) Initialize GemmaTrainer (on CPU)
|
| 113 |
model = GemmaTrainer(
|
| 114 |
input_dim=short_embeddings.shape[1],
|
| 115 |
+
hidden_dim=min(2048, int(short_embeddings.shape[1] * 2)),
|
| 116 |
+
output_dim=long_embeddings.shape[1],
|
| 117 |
+
).to(device) # device is cpu
|
| 118 |
|
| 119 |
+
# 5) Training loop (small-batch style to reduce memory pressure)
|
| 120 |
criterion = nn.MSELoss()
|
| 121 |
optimizer = optim.Adam(model.parameters(), lr=1e-3)
|
| 122 |
+
|
| 123 |
max_epochs = 500
|
| 124 |
tolerance = 1e-4
|
| 125 |
+
batch_size = 64 # small batches on CPU
|
| 126 |
+
|
| 127 |
+
n = short_embeddings.shape[0]
|
| 128 |
+
print("🚀 Training FlashPack mapper model (CPU). This may take some time...")
|
| 129 |
+
|
| 130 |
+
for epoch in range(1, max_epochs + 1):
|
| 131 |
+
model.train()
|
| 132 |
+
epoch_loss = 0.0
|
| 133 |
+
|
| 134 |
+
# Shuffle indices each epoch
|
| 135 |
+
perm = torch.randperm(n)
|
| 136 |
+
for start in range(0, n, batch_size):
|
| 137 |
+
idx = perm[start : start + batch_size]
|
| 138 |
+
inputs = short_embeddings[idx].to(device)
|
| 139 |
+
targets = long_embeddings[idx].to(device)
|
| 140 |
+
|
| 141 |
+
optimizer.zero_grad()
|
| 142 |
+
outputs = model(inputs)
|
| 143 |
+
loss = criterion(outputs, targets)
|
| 144 |
+
loss.backward()
|
| 145 |
+
optimizer.step()
|
| 146 |
|
| 147 |
+
epoch_loss += loss.item() * inputs.size(0)
|
| 148 |
+
|
| 149 |
+
epoch_loss /= n
|
| 150 |
+
if epoch % 10 == 0 or epoch == 1:
|
| 151 |
+
print(f"Epoch {epoch:03d}/{max_epochs}, Loss={epoch_loss:.6f}")
|
| 152 |
+
|
| 153 |
+
if epoch_loss < tolerance:
|
| 154 |
+
print(f"✅ Converged at epoch {epoch}, Loss={epoch_loss:.6f}")
|
| 155 |
break
|
|
|
|
|
|
|
| 156 |
|
| 157 |
+
# 6) Save model locally and optionally push to HF hub (robust)
|
| 158 |
+
try:
|
| 159 |
+
# If FlashPackMixin provides save_flashpack, use it:
|
| 160 |
+
if hasattr(model, "save_flashpack"):
|
| 161 |
+
print("💾 Saving model with FlashPackMixin.save_flashpack()")
|
| 162 |
+
model.save_flashpack(hf_repo, target_dtype=torch.float32, push_to_hub=push_to_hub)
|
| 163 |
+
else:
|
| 164 |
+
# Fallback: simple torch.save
|
| 165 |
+
path = "flashpack_model.pt"
|
| 166 |
+
torch.save(model.state_dict(), path)
|
| 167 |
+
print(f"💾 Saved locally to {path}")
|
| 168 |
+
if push_to_hub:
|
| 169 |
+
try:
|
| 170 |
+
from huggingface_hub import HfApi, HfFolder
|
| 171 |
+
api = HfApi()
|
| 172 |
+
token = HfFolder.get_token()
|
| 173 |
+
api.upload_file(path_or_fileobj=path, path_in_repo=path, repo_id=hf_repo, token=token)
|
| 174 |
+
print(f"🚀 Uploaded model file to HF: {hf_repo}")
|
| 175 |
+
except Exception as e:
|
| 176 |
+
print("⚠️ Could not push to HF Hub:", e)
|
| 177 |
+
except Exception as e:
|
| 178 |
+
print("⚠️ Error while saving/pushing model:", e)
|
| 179 |
|
| 180 |
+
print("✅ Training done — returning model and artifacts.")
|
| 181 |
return model, dataset, embed_model, tokenizer, long_embeddings
|
| 182 |
|
|
|
|
| 183 |
# ============================================================
|
| 184 |
+
# 4️⃣ Build everything and prepare for inference
|
| 185 |
# ============================================================
|
| 186 |
+
# For demo speed in CPU mode, you might want a subset_limit (e.g., 1000).
|
| 187 |
+
# Set subset_limit=None to use full dataset.
|
| 188 |
+
model, dataset, embed_model, tokenizer, long_embeddings = train_flashpack_model(
|
| 189 |
+
subset_limit=None, # change to a small int for faster testing
|
| 190 |
+
push_to_hub=False, # toggle when you want to actually push
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
model.eval()
|
| 194 |
|
| 195 |
+
# Reusable encode function for inference (returns CPU tensor)
|
| 196 |
+
@torch.no_grad()
|
| 197 |
+
def encode_for_inference(prompt: str) -> torch.Tensor:
|
|
|
|
| 198 |
inputs = tokenizer(
|
| 199 |
prompt,
|
| 200 |
return_tensors="pt",
|
| 201 |
truncation=True,
|
| 202 |
padding="max_length",
|
| 203 |
+
max_length=32,
|
| 204 |
).to(device)
|
| 205 |
+
return embed_model(**inputs).last_hidden_state.mean(dim=1).cpu()
|
|
|
|
| 206 |
|
| 207 |
+
# ============================================================
|
| 208 |
+
# 5️⃣ Enhance prompt function (nearest neighbor via cosine)
|
| 209 |
+
# ============================================================
|
| 210 |
+
def enhance_prompt(user_prompt: str, temperature: float, max_tokens: int, chat_history):
|
| 211 |
chat_history = chat_history or []
|
|
|
|
| 212 |
|
| 213 |
+
# encode user prompt (CPU tensor)
|
| 214 |
+
short_emb = encode_for_inference(user_prompt) # (1, dim)
|
| 215 |
with torch.no_grad():
|
| 216 |
+
mapped = model(short_emb.to(device)).cpu() # (1, dim)
|
| 217 |
|
| 218 |
+
# cosine similarity against dataset long embeddings
|
| 219 |
cos = nn.CosineSimilarity(dim=1)
|
| 220 |
+
# mapped.repeat(len(long_embeddings), 1) is heavy; do efficient matmul similarity:
|
| 221 |
+
sims = (long_embeddings @ mapped.t()).squeeze(1)
|
| 222 |
+
# normalize: sims / (||long|| * ||mapped||)
|
| 223 |
+
long_norms = long_embeddings.norm(dim=1)
|
| 224 |
+
mapped_norm = mapped.norm()
|
| 225 |
+
sims = sims / (long_norms * (mapped_norm + 1e-12))
|
| 226 |
+
|
| 227 |
+
best_idx = int(sims.argmax().item())
|
| 228 |
enhanced_prompt = dataset[best_idx]["long_prompt"]
|
| 229 |
|
| 230 |
chat_history.append({"role": "user", "content": user_prompt})
|
| 231 |
chat_history.append({"role": "assistant", "content": enhanced_prompt})
|
| 232 |
return chat_history
|
| 233 |
|
|
|
|
| 234 |
# ============================================================
|
| 235 |
+
# 6️⃣ Gradio UI
|
| 236 |
# ============================================================
|
| 237 |
+
with gr.Blocks(title="Prompt Enhancer – FlashPack (CPU)", theme=gr.themes.Soft()) as demo:
|
| 238 |
gr.Markdown(
|
| 239 |
"""
|
| 240 |
+
# ✨ Prompt Enhancer (FlashPack mapper)
|
| 241 |
+
Enter a short prompt, and the model will **expand it with details and creative context**.
|
| 242 |
+
(This demo runs on CPU — expect slower inference/training than GPU.)
|
| 243 |
"""
|
| 244 |
)
|
| 245 |
|
|
|
|
| 264 |
"""
|
| 265 |
---
|
| 266 |
💡 **Tips:**
|
| 267 |
+
- CPU mode: training and large-batch encodes can take a while. Use `subset_limit` in the training call for quick tests.
|
| 268 |
+
- Increase *Temperature* for more creative outputs (not used in the nearest-neighbour mapper but kept for UI parity).
|
| 269 |
"""
|
| 270 |
)
|
| 271 |
|
| 272 |
+
# ============================================================
|
| 273 |
+
# 7️⃣ Launch
|
| 274 |
+
# ============================================================
|
| 275 |
if __name__ == "__main__":
|
| 276 |
demo.launch(show_error=True)
|