Update app_flash.py
Browse files- app_flash.py +198 -77
app_flash.py
CHANGED
|
@@ -1,114 +1,235 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
-
from
|
| 5 |
-
from
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
from huggingface_hub import snapshot_download
|
| 10 |
-
|
| 11 |
|
| 12 |
# ============================================================
|
| 13 |
-
#
|
| 14 |
# ============================================================
|
| 15 |
-
device =
|
| 16 |
-
|
| 17 |
-
|
| 18 |
|
| 19 |
# ============================================================
|
| 20 |
-
#
|
| 21 |
# ============================================================
|
| 22 |
-
class
|
| 23 |
-
def __init__(self,
|
| 24 |
-
super().__init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
# ============================================================
|
| 28 |
-
#
|
| 29 |
# ============================================================
|
| 30 |
-
def
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
except Exception as e:
|
| 42 |
-
print(f"β οΈ Hub load failed: {e}")
|
| 43 |
-
print("β¬ Attempting to load via snapshot_download...")
|
| 44 |
-
try:
|
| 45 |
-
local_dir = snapshot_download(repo_id=repo_id)
|
| 46 |
-
pipeline = FlashPackMyPipeline.from_pretrained_flashpack(local_dir)
|
| 47 |
-
print(f"β
Loaded FlashPack pipeline from local snapshot: {local_dir}")
|
| 48 |
-
except Exception as e2:
|
| 49 |
-
raise RuntimeError(f"β Failed to load FlashPack model: {e2}")
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
# ============================================================
|
| 56 |
-
#
|
| 57 |
# ============================================================
|
| 58 |
-
def
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
try:
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
video_path = "/tmp/generated.mp4"
|
| 70 |
-
from diffusers.utils import export_to_video
|
| 71 |
-
export_to_video(frames, video_path)
|
| 72 |
-
return f"β
Video generated successfully!", video_path
|
| 73 |
-
else:
|
| 74 |
-
return "β οΈ Unknown output format.", None
|
| 75 |
except Exception as e:
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
# ============================================================
|
| 80 |
-
#
|
| 81 |
# ============================================================
|
| 82 |
try:
|
| 83 |
-
|
| 84 |
except Exception as e:
|
| 85 |
-
raise SystemExit(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
# ============================================================
|
| 89 |
-
#
|
| 90 |
# ============================================================
|
| 91 |
-
with gr.Blocks(title="
|
| 92 |
-
gr.Markdown(
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
| 97 |
|
| 98 |
with gr.Row():
|
|
|
|
| 99 |
with gr.Column(scale=1):
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
|
| 113 |
# ============================================================
|
| 114 |
# π Launch app
|
|
|
|
| 1 |
+
import gc
|
| 2 |
import os
|
| 3 |
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.optim as optim
|
| 6 |
+
import tempfile
|
| 7 |
import gradio as gr
|
| 8 |
+
from datasets import load_dataset
|
| 9 |
+
from transformers import AutoTokenizer, AutoModel
|
| 10 |
+
from flashpack import FlashPackMixin
|
| 11 |
+
from huggingface_hub import Repository
|
| 12 |
+
from typing import Tuple
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# ============================================================
|
| 15 |
+
# π₯ Device setup (CPU-only safe)
|
| 16 |
# ============================================================
|
| 17 |
+
device = torch.device("cpu")
|
| 18 |
+
torch.set_num_threads(4)
|
| 19 |
+
print(f"π§ Using device: {device} (CPU-only mode)")
|
| 20 |
|
| 21 |
# ============================================================
|
| 22 |
+
# 1οΈβ£ Define FlashPack model
|
| 23 |
# ============================================================
|
| 24 |
+
class GemmaTrainer(nn.Module, FlashPackMixin):
|
| 25 |
+
def __init__(self, input_dim: int = 768, hidden_dim: int = 512, output_dim: int = 768):
|
| 26 |
+
super().__init__()
|
| 27 |
+
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
| 28 |
+
self.relu = nn.ReLU()
|
| 29 |
+
self.fc2 = nn.Linear(hidden_dim, output_dim)
|
| 30 |
+
|
| 31 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 32 |
+
x = self.fc1(x)
|
| 33 |
+
x = self.relu(x)
|
| 34 |
+
x = self.fc2(x)
|
| 35 |
+
return x
|
| 36 |
|
| 37 |
+
# ============================================================
|
| 38 |
+
# 2οΈβ£ Build tokenizer + encoder
|
| 39 |
+
# ============================================================
|
| 40 |
+
def build_encoder(model_name="gpt2", max_length: int = 32):
|
| 41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 42 |
+
if tokenizer.pad_token is None:
|
| 43 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 44 |
+
|
| 45 |
+
embed_model = AutoModel.from_pretrained(model_name).to(device)
|
| 46 |
+
embed_model.eval()
|
| 47 |
+
|
| 48 |
+
@torch.no_grad()
|
| 49 |
+
def encode(prompt: str) -> torch.Tensor:
|
| 50 |
+
inputs = tokenizer(
|
| 51 |
+
prompt,
|
| 52 |
+
return_tensors="pt",
|
| 53 |
+
truncation=True,
|
| 54 |
+
padding="max_length",
|
| 55 |
+
max_length=max_length
|
| 56 |
+
).to(device)
|
| 57 |
+
outputs = embed_model(**inputs).last_hidden_state.mean(dim=1)
|
| 58 |
+
return outputs.cpu()
|
| 59 |
+
|
| 60 |
+
return tokenizer, embed_model, encode
|
| 61 |
|
| 62 |
# ============================================================
|
| 63 |
+
# 3οΈβ£ Push FlashPack model to HF
|
| 64 |
# ============================================================
|
| 65 |
+
def push_flashpack_model_to_hf(model, hf_repo: str):
|
| 66 |
+
logs = []
|
| 67 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
| 68 |
+
logs.append(f"π Using temporary directory: {tmp_dir}")
|
| 69 |
+
repo = Repository(local_dir=tmp_dir, clone_from=hf_repo, use_auth_token=True)
|
| 70 |
+
logs.append(f"π Hugging Face repo cloned to: {tmp_dir}")
|
| 71 |
|
| 72 |
+
pack_path = os.path.join(tmp_dir, "model.flashpack")
|
| 73 |
+
logs.append(f"πΎ Saving model to: {pack_path}")
|
| 74 |
+
model.save_flashpack(pack_path, target_dtype=torch.float32)
|
| 75 |
+
logs.append("β
Model saved successfully.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
readme_path = os.path.join(tmp_dir, "README.md")
|
| 78 |
+
with open(readme_path, "w") as f:
|
| 79 |
+
f.write("# FlashPack Model\nThis repo contains a FlashPack model.")
|
| 80 |
+
logs.append("π README.md added.")
|
| 81 |
|
| 82 |
+
logs.append("π Pushing repo to Hugging Face Hub...")
|
| 83 |
+
repo.push_to_hub()
|
| 84 |
+
logs.append(f"β
Model successfully pushed to: {hf_repo}")
|
| 85 |
+
|
| 86 |
+
return logs
|
| 87 |
|
| 88 |
# ============================================================
|
| 89 |
+
# 4οΈβ£ Train FlashPack model
|
| 90 |
# ============================================================
|
| 91 |
+
def train_flashpack_model(
|
| 92 |
+
dataset_name: str = "gokaygokay/prompt-enhancer-dataset",
|
| 93 |
+
max_encode: int = 1000,
|
| 94 |
+
device: str = "cpu"
|
| 95 |
+
) -> Tuple[GemmaTrainer, object, object, object, torch.Tensor]:
|
| 96 |
+
print("π¦ Loading dataset...")
|
| 97 |
+
dataset = load_dataset(dataset_name, split="train")
|
| 98 |
+
limit = min(max_encode, len(dataset))
|
| 99 |
+
dataset = dataset.select(range(limit))
|
| 100 |
+
print(f"β‘ Encoding {len(dataset)} prompts (max {max_encode})")
|
| 101 |
+
|
| 102 |
+
tokenizer, embed_model, encode_fn = build_encoder("gpt2", max_length=32)
|
| 103 |
+
|
| 104 |
+
short_list, long_list = [], []
|
| 105 |
+
for i, item in enumerate(dataset):
|
| 106 |
+
short_list.append(encode_fn(item["short_prompt"]))
|
| 107 |
+
long_list.append(encode_fn(item["long_prompt"]))
|
| 108 |
+
if (i+1) % 50 == 0 or (i+1) == len(dataset):
|
| 109 |
+
print(f" β Encoded {i+1}/{limit} prompts")
|
| 110 |
+
gc.collect()
|
| 111 |
+
|
| 112 |
+
short_embeddings = torch.vstack(short_list)
|
| 113 |
+
long_embeddings = torch.vstack(long_list)
|
| 114 |
+
print(f"β
Finished encoding {short_embeddings.shape[0]} prompts")
|
| 115 |
+
|
| 116 |
+
# Build model
|
| 117 |
+
model = GemmaTrainer(
|
| 118 |
+
input_dim=short_embeddings.shape[1],
|
| 119 |
+
hidden_dim=min(512, short_embeddings.shape[1]),
|
| 120 |
+
output_dim=long_embeddings.shape[1]
|
| 121 |
+
).to(device)
|
| 122 |
+
|
| 123 |
+
criterion = nn.MSELoss()
|
| 124 |
+
optimizer = optim.Adam(model.parameters(), lr=1e-3)
|
| 125 |
+
max_epochs = 20
|
| 126 |
+
batch_size = 32
|
| 127 |
+
|
| 128 |
+
print("π Training model...")
|
| 129 |
+
n = short_embeddings.shape[0]
|
| 130 |
+
for epoch in range(max_epochs):
|
| 131 |
+
model.train()
|
| 132 |
+
epoch_loss = 0.0
|
| 133 |
+
perm = torch.randperm(n)
|
| 134 |
+
for start in range(0, n, batch_size):
|
| 135 |
+
idx = perm[start:start+batch_size]
|
| 136 |
+
inputs = short_embeddings[idx].to(device)
|
| 137 |
+
targets = long_embeddings[idx].to(device)
|
| 138 |
+
|
| 139 |
+
optimizer.zero_grad()
|
| 140 |
+
outputs = model(inputs)
|
| 141 |
+
loss = criterion(outputs, targets)
|
| 142 |
+
loss.backward()
|
| 143 |
+
optimizer.step()
|
| 144 |
+
epoch_loss += loss.item() * inputs.size(0)
|
| 145 |
+
|
| 146 |
+
epoch_loss /= n
|
| 147 |
+
if epoch % 5 == 0 or epoch == max_epochs-1:
|
| 148 |
+
print(f"Epoch {epoch+1}/{max_epochs}, Loss={epoch_loss:.6f}")
|
| 149 |
+
|
| 150 |
+
print("β
Training finished!")
|
| 151 |
+
return model, dataset, embed_model, tokenizer, long_embeddings
|
| 152 |
|
| 153 |
+
# ============================================================
|
| 154 |
+
# 5οΈβ£ Load FlashPack model (train if missing)
|
| 155 |
+
# ============================================================
|
| 156 |
+
def get_flashpack_model(hf_repo="rahul7star/FlashPack"):
|
| 157 |
try:
|
| 158 |
+
print(f"π Attempting to load FlashPack model from {hf_repo}")
|
| 159 |
+
model = GemmaTrainer.from_flashpack(hf_repo)
|
| 160 |
+
model.eval()
|
| 161 |
+
print("β
Loaded model successfully from HF")
|
| 162 |
+
tokenizer, embed_model, encode_fn = build_encoder("gpt2", max_length=32)
|
| 163 |
+
return model, tokenizer, embed_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
except Exception as e:
|
| 165 |
+
print(f"β οΈ Load failed: {e}")
|
| 166 |
+
print("β¬ Training a new FlashPack model locally...")
|
| 167 |
+
model, dataset, embed_model, tokenizer, long_embeddings = train_flashpack_model()
|
| 168 |
+
print("π€ Pushing trained model to HF...")
|
| 169 |
+
push_flashpack_model_to_hf(model, hf_repo)
|
| 170 |
+
return model, tokenizer, embed_model, dataset, long_embeddings
|
| 171 |
|
| 172 |
# ============================================================
|
| 173 |
+
# 6οΈβ£ Load or train
|
| 174 |
# ============================================================
|
| 175 |
try:
|
| 176 |
+
model, tokenizer, embed_model, dataset, long_embeddings = get_flashpack_model()
|
| 177 |
except Exception as e:
|
| 178 |
+
raise SystemExit(f"β Failed to load or train FlashPack model: {e}")
|
| 179 |
+
|
| 180 |
+
# ============================================================
|
| 181 |
+
# 7οΈβ£ Inference helpers
|
| 182 |
+
# ============================================================
|
| 183 |
+
@torch.no_grad()
|
| 184 |
+
def encode_for_inference(prompt: str) -> torch.Tensor:
|
| 185 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True,
|
| 186 |
+
padding="max_length", max_length=32).to(device)
|
| 187 |
+
return embed_model(**inputs).last_hidden_state.mean(dim=1).cpu()
|
| 188 |
+
|
| 189 |
+
def enhance_prompt(user_prompt: str, temperature: float, max_tokens: int, chat_history):
|
| 190 |
+
chat_history = chat_history or []
|
| 191 |
+
short_emb = encode_for_inference(user_prompt)
|
| 192 |
+
mapped = model(short_emb.to(device)).cpu()
|
| 193 |
|
| 194 |
+
sims = (long_embeddings @ mapped.t()).squeeze(1)
|
| 195 |
+
long_norms = long_embeddings.norm(dim=1)
|
| 196 |
+
mapped_norm = mapped.norm()
|
| 197 |
+
sims = sims / (long_norms * (mapped_norm + 1e-12))
|
| 198 |
+
|
| 199 |
+
best_idx = int(sims.argmax().item())
|
| 200 |
+
enhanced_prompt = dataset[best_idx]["long_prompt"]
|
| 201 |
+
|
| 202 |
+
chat_history.append({"role": "user", "content": user_prompt})
|
| 203 |
+
chat_history.append({"role": "assistant", "content": enhanced_prompt})
|
| 204 |
+
return chat_history
|
| 205 |
|
| 206 |
# ============================================================
|
| 207 |
+
# 8οΈβ£ Gradio UI
|
| 208 |
# ============================================================
|
| 209 |
+
with gr.Blocks(title="Prompt Enhancer β FlashPack (CPU)", theme=gr.themes.Soft()) as demo:
|
| 210 |
+
gr.Markdown(
|
| 211 |
+
"""
|
| 212 |
+
# β¨ Prompt Enhancer (FlashPack mapper)
|
| 213 |
+
Enter a short prompt, and the model will **expand it with details and creative context**.
|
| 214 |
+
(CPU-only mode.)
|
| 215 |
+
"""
|
| 216 |
+
)
|
| 217 |
|
| 218 |
with gr.Row():
|
| 219 |
+
chatbot = gr.Chatbot(height=400, label="Enhanced Prompts", type="messages")
|
| 220 |
with gr.Column(scale=1):
|
| 221 |
+
user_prompt = gr.Textbox(placeholder="Enter a short prompt...", label="Your Prompt", lines=3)
|
| 222 |
+
temperature = gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Temperature")
|
| 223 |
+
max_tokens = gr.Slider(32, 256, value=128, step=16, label="Max Tokens")
|
| 224 |
+
send_btn = gr.Button("π Enhance Prompt", variant="primary")
|
| 225 |
+
clear_btn = gr.Button("π§Ή Clear Chat")
|
| 226 |
+
|
| 227 |
+
send_btn.click(enhance_prompt, [user_prompt, temperature, max_tokens, chatbot], chatbot)
|
| 228 |
+
user_prompt.submit(enhance_prompt, [user_prompt, temperature, max_tokens, chatbot], chatbot)
|
| 229 |
+
clear_btn.click(lambda: [], None, chatbot)
|
| 230 |
+
|
| 231 |
+
# ============================================================
|
| 232 |
+
# 9οΈβ£ Launch
|
| 233 |
|
| 234 |
# ============================================================
|
| 235 |
# π Launch app
|