Low-resource-QE-DA-dataset / low_resource_qe_da_dataset.py
dipteshkanojia's picture
adding parquet files for default loader
da124d5
import ast
import csv
import os
import statistics
from typing import Dict, Iterable, List, Optional
import datasets
logger = datasets.logging.get_logger(__name__)
class LowResourceQeDaConfig(datasets.BuilderConfig):
def __init__(
self,
language_pair: tuple,
has_model_scores: bool = False,
has_pe: bool = False,
language_pairs: Optional[List[str]] = None,
include_lang_pair: bool = False,
**kwargs,
):
super().__init__(**kwargs)
self.language_pair = language_pair
self.has_model_scores = has_model_scores
self.has_pe = has_pe
self.language_pairs = language_pairs
self.include_lang_pair = include_lang_pair
LANGUAGE_CONFIGS = {
"engu": LowResourceQeDaConfig(
name="engu",
description="English-Gujarati direct assessment QE",
version=datasets.Version("1.0.0"),
language_pair=("English", "Gujarati"),
),
"enhi": LowResourceQeDaConfig(
name="enhi",
description="English-Hindi direct assessment QE",
version=datasets.Version("1.0.0"),
language_pair=("English", "Hindi"),
),
"enmr": LowResourceQeDaConfig(
name="enmr",
description="English-Marathi direct assessment QE (test split contains PE)",
version=datasets.Version("1.0.0"),
language_pair=("English", "Marathi"),
has_pe=True,
),
"enta": LowResourceQeDaConfig(
name="enta",
description="English-Tamil direct assessment QE",
version=datasets.Version("1.0.0"),
language_pair=("English", "Tamil"),
),
"ente": LowResourceQeDaConfig(
name="ente",
description="English-Telugu direct assessment QE",
version=datasets.Version("1.0.0"),
language_pair=("English", "Telugu"),
),
"eten": LowResourceQeDaConfig(
name="eten",
description="Estonian-English direct assessment QE",
version=datasets.Version("1.0.0"),
language_pair=("Estonian", "English"),
has_model_scores=True,
),
"neen": LowResourceQeDaConfig(
name="neen",
description="Nepali-English direct assessment QE",
version=datasets.Version("1.0.0"),
language_pair=("Nepali", "English"),
has_model_scores=True,
),
"sien": LowResourceQeDaConfig(
name="sien",
description="Sinhala-English direct assessment QE",
version=datasets.Version("1.0.0"),
language_pair=("Sinhala", "English"),
has_model_scores=True,
),
}
MULTILINGUAL_CONFIG = LowResourceQeDaConfig(
name="multilingual",
description="All language pairs combined for train/dev with language labels; test splits remain per language pair.",
version=datasets.Version("1.0.0"),
language_pair=("multi", "multi"),
has_model_scores=True,
has_pe=True,
language_pairs=list(LANGUAGE_CONFIGS.keys()),
include_lang_pair=True,
)
def _parse_list(value: str) -> List:
try:
parsed = ast.literal_eval(value)
return list(parsed) if isinstance(parsed, (list, tuple)) else []
except (ValueError, SyntaxError):
return []
def _compute_stats(filepath: str) -> Dict[str, Optional[float]]:
means: List[float] = []
z_means: List[float] = []
with open(filepath, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for row in reader:
try:
means.append(float(row["mean"]))
except (KeyError, ValueError):
continue
try:
z_means.append(float(row["z_mean"]))
except (KeyError, ValueError):
continue
def _range_and_median(values: List[float]) -> Dict[str, Optional[float]]:
if not values:
return {"min": None, "max": None, "median": None}
return {
"min": min(values),
"max": max(values),
"median": statistics.median(values),
}
return {
"count": len(means),
"mean_stats": _range_and_median(means),
"z_mean_stats": _range_and_median(z_means),
}
class LowResourceQeDa(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = list(LANGUAGE_CONFIGS.values()) + [MULTILINGUAL_CONFIG]
DEFAULT_CONFIG_NAME = "engu"
def _info(self) -> datasets.DatasetInfo:
features = {
"index": datasets.Value("string"),
"original": datasets.Value("string"),
"translation": datasets.Value("string"),
"scores": datasets.Sequence(datasets.Value("int32")),
"mean": datasets.Value("float32"),
"z_scores": datasets.Sequence(datasets.Value("float32")),
"z_mean": datasets.Value("float32"),
}
if self.config.include_lang_pair:
features["lang_pair"] = datasets.Value("string")
if self.config.has_model_scores:
features["model_scores"] = datasets.Value("float32")
if self.config.has_pe:
features["pe"] = datasets.Value("string")
return datasets.DatasetInfo(
description="Direct assessment quality estimation data for multiple low-resource language pairs.",
features=datasets.Features(features),
supervised_keys=None,
homepage="",
citation="",
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
data_dir = self._resolve_data_dir()
selected_pairs = self.config.language_pairs or [self.config.name]
def _file_for(split: str, lang: str) -> str:
return os.path.join(data_dir, f"{split}.{lang}.df.short.tsv")
train_files = [(lang, _file_for("train", lang)) for lang in selected_pairs if os.path.exists(_file_for("train", lang))]
dev_files = [(lang, _file_for("dev", lang)) for lang in selected_pairs if os.path.exists(_file_for("dev", lang))]
test_files = [(lang, _file_for("test", lang)) for lang in selected_pairs if os.path.exists(_file_for("test", lang))]
stats = self._collect_stats(train_files, dev_files, test_files)
self._log_overview(stats)
generators: List[datasets.SplitGenerator] = []
if train_files:
generators.append(
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepaths": train_files, "split_name": "train"},
)
)
if dev_files:
generators.append(
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepaths": dev_files, "split_name": "dev"},
)
)
if len(selected_pairs) == 1:
if test_files:
generators.append(
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepaths": test_files, "split_name": "test"},
)
)
else:
for lang, path in test_files:
generators.append(
datasets.SplitGenerator(
name=f"test_{lang}",
gen_kwargs={"filepaths": [(lang, path)], "split_name": "test"},
)
)
return generators
def _generate_examples(self, filepaths: List[tuple], split_name: str) -> Iterable:
idx = 0
for lang, filepath in filepaths:
pair_config = LANGUAGE_CONFIGS.get(lang, self.config)
with open(filepath, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for row in reader:
item = {
"index": str(row.get("index", "")),
"original": row.get("original", ""),
"translation": row.get("translation", ""),
"scores": [int(x) for x in _parse_list(row.get("scores", ""))],
"mean": float(row.get("mean", 0.0)),
"z_scores": [float(x) for x in _parse_list(row.get("z_scores", ""))],
"z_mean": float(row.get("z_mean", 0.0)),
}
if self.config.include_lang_pair:
item["lang_pair"] = lang
if self.config.has_model_scores:
model_value = row.get("model_scores")
item["model_scores"] = (
float(model_value) if pair_config.has_model_scores and model_value not in (None, "") else None
)
if self.config.has_pe:
item["pe"] = row.get("PE") or row.get("pe") or None
yield idx, item
idx += 1
def _collect_stats(self, train_files, dev_files, test_files):
def collect(file_list):
return {lang: _compute_stats(path) for lang, path in file_list}
return {
"train": collect(train_files),
"dev": collect(dev_files),
"test": collect(test_files),
}
def _resolve_data_dir(self) -> str:
"""Find the directory that actually contains the TSV files."""
candidates = []
if self.config.data_dir:
candidates.append(os.path.abspath(self.config.data_dir))
# Directory next to the script (works when files are present in the repo)
candidates.append(os.path.abspath(os.path.dirname(__file__)))
# Parent directory (if the script gets copied to a cache without data)
candidates.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir)))
for cand in candidates:
if os.path.exists(os.path.join(cand, "train.engu.df.short.tsv")):
return cand
raise FileNotFoundError(
f"Could not locate TSV files. Checked: {candidates}. "
"Pass data_dir to load_dataset or set LOW_RESOURCE_QE_DA_DATA_DIR env var."
)
def _log_overview(self, stats: Dict[str, Dict[str, Dict[str, Optional[float]]]]) -> None:
def print_line(msg: str):
logger.info(msg)
print(msg, flush=True)
if self.config.language_pairs and len(self.config.language_pairs) > 1:
for split_name, split_stats in stats.items():
if not split_stats:
print_line(f"[{self.config.name}] split={split_name} | no files found")
continue
total = sum(s["count"] for s in split_stats.values())
mean_mins = [s["mean_stats"]["min"] for s in split_stats.values() if s["mean_stats"]["min"] is not None]
mean_maxs = [s["mean_stats"]["max"] for s in split_stats.values() if s["mean_stats"]["max"] is not None]
z_mins = [s["z_mean_stats"]["min"] for s in split_stats.values() if s["z_mean_stats"]["min"] is not None]
z_maxs = [s["z_mean_stats"]["max"] for s in split_stats.values() if s["z_mean_stats"]["max"] is not None]
if mean_mins and mean_maxs and z_mins and z_maxs:
print_line(
f"[{self.config.name}] split={split_name} | total instances={total} | "
f"DA mean range {min(mean_mins):.3f}{max(mean_maxs):.3f} | "
f"z_mean range {min(z_mins):.3f}{max(z_maxs):.3f}"
)
for lang, s in split_stats.items():
mean_stats = s["mean_stats"]
z_stats = s["z_mean_stats"]
print_line(
f" - {lang} | n={s['count']} | DA mean {mean_stats['min']:.3f}{mean_stats['max']:.3f} "
f"(median {mean_stats['median']:.3f}) | z_mean {z_stats['min']:.3f}{z_stats['max']:.3f} "
f"(median {z_stats['median']:.3f})"
)
else:
source_lang, target_lang = self.config.language_pair
for split, split_stats in stats.items():
if not split_stats:
print_line(f"Loaded {self.config.name} ({source_lang}{target_lang}) | split={split} | no files found")
continue
lang = self.config.name
s = split_stats.get(lang) or next(iter(split_stats.values()))
mean_stats = s["mean_stats"]
z_stats = s["z_mean_stats"]
print_line(
f"Loaded {lang} ({source_lang}{target_lang}) | split={split} | instances={s['count']} "
f"| DA mean range {mean_stats['min']:.3f}{mean_stats['max']:.3f} (median {mean_stats['median']:.3f}) "
f"| z_mean range {z_stats['min']:.3f}{z_stats['max']:.3f} (median {z_stats['median']:.3f})"
)