File size: 13,069 Bytes
0aef5f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
772bc8c
 
0aef5f1
 
 
 
 
 
772bc8c
 
0aef5f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
772bc8c
 
 
 
 
 
 
 
 
 
0aef5f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
772bc8c
0aef5f1
 
 
 
 
 
 
 
 
 
 
 
772bc8c
 
0aef5f1
 
 
 
 
 
 
 
 
 
 
 
 
 
772bc8c
 
0aef5f1
772bc8c
 
 
 
 
 
 
 
0aef5f1
 
772bc8c
 
 
 
 
 
 
0aef5f1
772bc8c
 
 
 
 
 
0aef5f1
772bc8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import ast
import csv
import os
import statistics
from typing import Dict, Iterable, List, Optional

import datasets


logger = datasets.logging.get_logger(__name__)


class LowResourceQeDaConfig(datasets.BuilderConfig):
    def __init__(
        self,
        language_pair: tuple,
        has_model_scores: bool = False,
        has_pe: bool = False,
        language_pairs: Optional[List[str]] = None,
        include_lang_pair: bool = False,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.language_pair = language_pair
        self.has_model_scores = has_model_scores
        self.has_pe = has_pe
        self.language_pairs = language_pairs
        self.include_lang_pair = include_lang_pair


LANGUAGE_CONFIGS = {
    "engu": LowResourceQeDaConfig(
        name="engu",
        description="English-Gujarati direct assessment QE",
        version=datasets.Version("1.0.0"),
        language_pair=("English", "Gujarati"),
    ),
    "enhi": LowResourceQeDaConfig(
        name="enhi",
        description="English-Hindi direct assessment QE",
        version=datasets.Version("1.0.0"),
        language_pair=("English", "Hindi"),
    ),
    "enmr": LowResourceQeDaConfig(
        name="enmr",
        description="English-Marathi direct assessment QE (test split contains PE)",
        version=datasets.Version("1.0.0"),
        language_pair=("English", "Marathi"),
        has_pe=True,
    ),
    "enta": LowResourceQeDaConfig(
        name="enta",
        description="English-Tamil direct assessment QE",
        version=datasets.Version("1.0.0"),
        language_pair=("English", "Tamil"),
    ),
    "ente": LowResourceQeDaConfig(
        name="ente",
        description="English-Telugu direct assessment QE",
        version=datasets.Version("1.0.0"),
        language_pair=("English", "Telugu"),
    ),
    "eten": LowResourceQeDaConfig(
        name="eten",
        description="Estonian-English direct assessment QE",
        version=datasets.Version("1.0.0"),
        language_pair=("Estonian", "English"),
        has_model_scores=True,
    ),
    "neen": LowResourceQeDaConfig(
        name="neen",
        description="Nepali-English direct assessment QE",
        version=datasets.Version("1.0.0"),
        language_pair=("Nepali", "English"),
        has_model_scores=True,
    ),
    "sien": LowResourceQeDaConfig(
        name="sien",
        description="Sinhala-English direct assessment QE",
        version=datasets.Version("1.0.0"),
        language_pair=("Sinhala", "English"),
        has_model_scores=True,
    ),
}
MULTILINGUAL_CONFIG = LowResourceQeDaConfig(
    name="multilingual",
    description="All language pairs combined for train/dev with language labels; test splits remain per language pair.",
    version=datasets.Version("1.0.0"),
    language_pair=("multi", "multi"),
    has_model_scores=True,
    has_pe=True,
    language_pairs=list(LANGUAGE_CONFIGS.keys()),
    include_lang_pair=True,
)


def _parse_list(value: str) -> List:
    try:
        parsed = ast.literal_eval(value)
        return list(parsed) if isinstance(parsed, (list, tuple)) else []
    except (ValueError, SyntaxError):
        return []


def _compute_stats(filepath: str) -> Dict[str, Optional[float]]:
    means: List[float] = []
    z_means: List[float] = []
    with open(filepath, encoding="utf-8") as f:
        reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
        for row in reader:
            try:
                means.append(float(row["mean"]))
            except (KeyError, ValueError):
                continue
            try:
                z_means.append(float(row["z_mean"]))
            except (KeyError, ValueError):
                continue

    def _range_and_median(values: List[float]) -> Dict[str, Optional[float]]:
        if not values:
            return {"min": None, "max": None, "median": None}
        return {
            "min": min(values),
            "max": max(values),
            "median": statistics.median(values),
        }

    return {
        "count": len(means),
        "mean_stats": _range_and_median(means),
        "z_mean_stats": _range_and_median(z_means),
    }


class LowResourceQeDa(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = list(LANGUAGE_CONFIGS.values()) + [MULTILINGUAL_CONFIG]
    DEFAULT_CONFIG_NAME = "engu"

    def _info(self) -> datasets.DatasetInfo:
        features = {
            "index": datasets.Value("string"),
            "original": datasets.Value("string"),
            "translation": datasets.Value("string"),
            "scores": datasets.Sequence(datasets.Value("int32")),
            "mean": datasets.Value("float32"),
            "z_scores": datasets.Sequence(datasets.Value("float32")),
            "z_mean": datasets.Value("float32"),
        }
        if self.config.include_lang_pair:
            features["lang_pair"] = datasets.Value("string")
        if self.config.has_model_scores:
            features["model_scores"] = datasets.Value("float32")
        if self.config.has_pe:
            features["pe"] = datasets.Value("string")

        return datasets.DatasetInfo(
            description="Direct assessment quality estimation data for multiple low-resource language pairs.",
            features=datasets.Features(features),
            supervised_keys=None,
            homepage="",
            citation="",
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        data_dir = self._resolve_data_dir()
        selected_pairs = self.config.language_pairs or [self.config.name]

        def _file_for(split: str, lang: str) -> str:
            return os.path.join(data_dir, f"{split}.{lang}.df.short.tsv")

        train_files = [(lang, _file_for("train", lang)) for lang in selected_pairs if os.path.exists(_file_for("train", lang))]
        dev_files = [(lang, _file_for("dev", lang)) for lang in selected_pairs if os.path.exists(_file_for("dev", lang))]
        test_files = [(lang, _file_for("test", lang)) for lang in selected_pairs if os.path.exists(_file_for("test", lang))]

        stats = self._collect_stats(train_files, dev_files, test_files)
        self._log_overview(stats)

        generators: List[datasets.SplitGenerator] = []
        if train_files:
            generators.append(
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={"filepaths": train_files, "split_name": "train"},
                )
            )
        if dev_files:
            generators.append(
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={"filepaths": dev_files, "split_name": "dev"},
                )
            )
        if len(selected_pairs) == 1:
            if test_files:
                generators.append(
                    datasets.SplitGenerator(
                        name=datasets.Split.TEST,
                        gen_kwargs={"filepaths": test_files, "split_name": "test"},
                    )
                )
        else:
            for lang, path in test_files:
                generators.append(
                    datasets.SplitGenerator(
                        name=f"test_{lang}",
                        gen_kwargs={"filepaths": [(lang, path)], "split_name": "test"},
                    )
                )
        return generators

    def _generate_examples(self, filepaths: List[tuple], split_name: str) -> Iterable:
        idx = 0
        for lang, filepath in filepaths:
            pair_config = LANGUAGE_CONFIGS.get(lang, self.config)
            with open(filepath, encoding="utf-8") as f:
                reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
                for row in reader:
                    item = {
                        "index": str(row.get("index", "")),
                        "original": row.get("original", ""),
                        "translation": row.get("translation", ""),
                        "scores": [int(x) for x in _parse_list(row.get("scores", ""))],
                        "mean": float(row.get("mean", 0.0)),
                        "z_scores": [float(x) for x in _parse_list(row.get("z_scores", ""))],
                        "z_mean": float(row.get("z_mean", 0.0)),
                    }
                    if self.config.include_lang_pair:
                        item["lang_pair"] = lang
                    if self.config.has_model_scores:
                        model_value = row.get("model_scores")
                        item["model_scores"] = (
                            float(model_value) if pair_config.has_model_scores and model_value not in (None, "") else None
                        )
                    if self.config.has_pe:
                        item["pe"] = row.get("PE") or row.get("pe") or None
                    yield idx, item
                    idx += 1

    def _collect_stats(self, train_files, dev_files, test_files):
        def collect(file_list):
            return {lang: _compute_stats(path) for lang, path in file_list}

        return {
            "train": collect(train_files),
            "dev": collect(dev_files),
            "test": collect(test_files),
        }

    def _resolve_data_dir(self) -> str:
        """Find the directory that actually contains the TSV files."""
        candidates = []
        if self.config.data_dir:
            candidates.append(os.path.abspath(self.config.data_dir))
        # Directory next to the script (works when files are present in the repo)
        candidates.append(os.path.abspath(os.path.dirname(__file__)))
        # Parent directory (if the script gets copied to a cache without data)
        candidates.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir)))

        for cand in candidates:
            if os.path.exists(os.path.join(cand, "train.engu.df.short.tsv")):
                return cand

        raise FileNotFoundError(
            f"Could not locate TSV files. Checked: {candidates}. "
            "Pass data_dir to load_dataset or set LOW_RESOURCE_QE_DA_DATA_DIR env var."
        )

    def _log_overview(self, stats: Dict[str, Dict[str, Dict[str, Optional[float]]]]) -> None:
        def print_line(msg: str):
            logger.info(msg)
            print(msg, flush=True)

        if self.config.language_pairs and len(self.config.language_pairs) > 1:
            for split_name, split_stats in stats.items():
                if not split_stats:
                    print_line(f"[{self.config.name}] split={split_name} | no files found")
                    continue
                total = sum(s["count"] for s in split_stats.values())
                mean_mins = [s["mean_stats"]["min"] for s in split_stats.values() if s["mean_stats"]["min"] is not None]
                mean_maxs = [s["mean_stats"]["max"] for s in split_stats.values() if s["mean_stats"]["max"] is not None]
                z_mins = [s["z_mean_stats"]["min"] for s in split_stats.values() if s["z_mean_stats"]["min"] is not None]
                z_maxs = [s["z_mean_stats"]["max"] for s in split_stats.values() if s["z_mean_stats"]["max"] is not None]
                if mean_mins and mean_maxs and z_mins and z_maxs:
                    print_line(
                        f"[{self.config.name}] split={split_name} | total instances={total} | "
                        f"DA mean range {min(mean_mins):.3f}{max(mean_maxs):.3f} | "
                        f"z_mean range {min(z_mins):.3f}{max(z_maxs):.3f}"
                    )
                for lang, s in split_stats.items():
                    mean_stats = s["mean_stats"]
                    z_stats = s["z_mean_stats"]
                    print_line(
                        f"  - {lang} | n={s['count']} | DA mean {mean_stats['min']:.3f}{mean_stats['max']:.3f} "
                        f"(median {mean_stats['median']:.3f}) | z_mean {z_stats['min']:.3f}{z_stats['max']:.3f} "
                        f"(median {z_stats['median']:.3f})"
                    )
        else:
            source_lang, target_lang = self.config.language_pair
            for split, split_stats in stats.items():
                if not split_stats:
                    print_line(f"Loaded {self.config.name} ({source_lang}{target_lang}) | split={split} | no files found")
                    continue
                lang = self.config.name
                s = split_stats.get(lang) or next(iter(split_stats.values()))
                mean_stats = s["mean_stats"]
                z_stats = s["z_mean_stats"]
                print_line(
                    f"Loaded {lang} ({source_lang}{target_lang}) | split={split} | instances={s['count']} "
                    f"| DA mean range {mean_stats['min']:.3f}{mean_stats['max']:.3f} (median {mean_stats['median']:.3f}) "
                    f"| z_mean range {z_stats['min']:.3f}{z_stats['max']:.3f} (median {z_stats['median']:.3f})"
                )