Datasets:
File size: 13,069 Bytes
0aef5f1 772bc8c 0aef5f1 772bc8c 0aef5f1 772bc8c 0aef5f1 772bc8c 0aef5f1 772bc8c 0aef5f1 772bc8c 0aef5f1 772bc8c 0aef5f1 772bc8c 0aef5f1 772bc8c 0aef5f1 772bc8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import ast
import csv
import os
import statistics
from typing import Dict, Iterable, List, Optional
import datasets
logger = datasets.logging.get_logger(__name__)
class LowResourceQeDaConfig(datasets.BuilderConfig):
def __init__(
self,
language_pair: tuple,
has_model_scores: bool = False,
has_pe: bool = False,
language_pairs: Optional[List[str]] = None,
include_lang_pair: bool = False,
**kwargs,
):
super().__init__(**kwargs)
self.language_pair = language_pair
self.has_model_scores = has_model_scores
self.has_pe = has_pe
self.language_pairs = language_pairs
self.include_lang_pair = include_lang_pair
LANGUAGE_CONFIGS = {
"engu": LowResourceQeDaConfig(
name="engu",
description="English-Gujarati direct assessment QE",
version=datasets.Version("1.0.0"),
language_pair=("English", "Gujarati"),
),
"enhi": LowResourceQeDaConfig(
name="enhi",
description="English-Hindi direct assessment QE",
version=datasets.Version("1.0.0"),
language_pair=("English", "Hindi"),
),
"enmr": LowResourceQeDaConfig(
name="enmr",
description="English-Marathi direct assessment QE (test split contains PE)",
version=datasets.Version("1.0.0"),
language_pair=("English", "Marathi"),
has_pe=True,
),
"enta": LowResourceQeDaConfig(
name="enta",
description="English-Tamil direct assessment QE",
version=datasets.Version("1.0.0"),
language_pair=("English", "Tamil"),
),
"ente": LowResourceQeDaConfig(
name="ente",
description="English-Telugu direct assessment QE",
version=datasets.Version("1.0.0"),
language_pair=("English", "Telugu"),
),
"eten": LowResourceQeDaConfig(
name="eten",
description="Estonian-English direct assessment QE",
version=datasets.Version("1.0.0"),
language_pair=("Estonian", "English"),
has_model_scores=True,
),
"neen": LowResourceQeDaConfig(
name="neen",
description="Nepali-English direct assessment QE",
version=datasets.Version("1.0.0"),
language_pair=("Nepali", "English"),
has_model_scores=True,
),
"sien": LowResourceQeDaConfig(
name="sien",
description="Sinhala-English direct assessment QE",
version=datasets.Version("1.0.0"),
language_pair=("Sinhala", "English"),
has_model_scores=True,
),
}
MULTILINGUAL_CONFIG = LowResourceQeDaConfig(
name="multilingual",
description="All language pairs combined for train/dev with language labels; test splits remain per language pair.",
version=datasets.Version("1.0.0"),
language_pair=("multi", "multi"),
has_model_scores=True,
has_pe=True,
language_pairs=list(LANGUAGE_CONFIGS.keys()),
include_lang_pair=True,
)
def _parse_list(value: str) -> List:
try:
parsed = ast.literal_eval(value)
return list(parsed) if isinstance(parsed, (list, tuple)) else []
except (ValueError, SyntaxError):
return []
def _compute_stats(filepath: str) -> Dict[str, Optional[float]]:
means: List[float] = []
z_means: List[float] = []
with open(filepath, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for row in reader:
try:
means.append(float(row["mean"]))
except (KeyError, ValueError):
continue
try:
z_means.append(float(row["z_mean"]))
except (KeyError, ValueError):
continue
def _range_and_median(values: List[float]) -> Dict[str, Optional[float]]:
if not values:
return {"min": None, "max": None, "median": None}
return {
"min": min(values),
"max": max(values),
"median": statistics.median(values),
}
return {
"count": len(means),
"mean_stats": _range_and_median(means),
"z_mean_stats": _range_and_median(z_means),
}
class LowResourceQeDa(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = list(LANGUAGE_CONFIGS.values()) + [MULTILINGUAL_CONFIG]
DEFAULT_CONFIG_NAME = "engu"
def _info(self) -> datasets.DatasetInfo:
features = {
"index": datasets.Value("string"),
"original": datasets.Value("string"),
"translation": datasets.Value("string"),
"scores": datasets.Sequence(datasets.Value("int32")),
"mean": datasets.Value("float32"),
"z_scores": datasets.Sequence(datasets.Value("float32")),
"z_mean": datasets.Value("float32"),
}
if self.config.include_lang_pair:
features["lang_pair"] = datasets.Value("string")
if self.config.has_model_scores:
features["model_scores"] = datasets.Value("float32")
if self.config.has_pe:
features["pe"] = datasets.Value("string")
return datasets.DatasetInfo(
description="Direct assessment quality estimation data for multiple low-resource language pairs.",
features=datasets.Features(features),
supervised_keys=None,
homepage="",
citation="",
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
data_dir = self._resolve_data_dir()
selected_pairs = self.config.language_pairs or [self.config.name]
def _file_for(split: str, lang: str) -> str:
return os.path.join(data_dir, f"{split}.{lang}.df.short.tsv")
train_files = [(lang, _file_for("train", lang)) for lang in selected_pairs if os.path.exists(_file_for("train", lang))]
dev_files = [(lang, _file_for("dev", lang)) for lang in selected_pairs if os.path.exists(_file_for("dev", lang))]
test_files = [(lang, _file_for("test", lang)) for lang in selected_pairs if os.path.exists(_file_for("test", lang))]
stats = self._collect_stats(train_files, dev_files, test_files)
self._log_overview(stats)
generators: List[datasets.SplitGenerator] = []
if train_files:
generators.append(
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepaths": train_files, "split_name": "train"},
)
)
if dev_files:
generators.append(
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepaths": dev_files, "split_name": "dev"},
)
)
if len(selected_pairs) == 1:
if test_files:
generators.append(
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepaths": test_files, "split_name": "test"},
)
)
else:
for lang, path in test_files:
generators.append(
datasets.SplitGenerator(
name=f"test_{lang}",
gen_kwargs={"filepaths": [(lang, path)], "split_name": "test"},
)
)
return generators
def _generate_examples(self, filepaths: List[tuple], split_name: str) -> Iterable:
idx = 0
for lang, filepath in filepaths:
pair_config = LANGUAGE_CONFIGS.get(lang, self.config)
with open(filepath, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for row in reader:
item = {
"index": str(row.get("index", "")),
"original": row.get("original", ""),
"translation": row.get("translation", ""),
"scores": [int(x) for x in _parse_list(row.get("scores", ""))],
"mean": float(row.get("mean", 0.0)),
"z_scores": [float(x) for x in _parse_list(row.get("z_scores", ""))],
"z_mean": float(row.get("z_mean", 0.0)),
}
if self.config.include_lang_pair:
item["lang_pair"] = lang
if self.config.has_model_scores:
model_value = row.get("model_scores")
item["model_scores"] = (
float(model_value) if pair_config.has_model_scores and model_value not in (None, "") else None
)
if self.config.has_pe:
item["pe"] = row.get("PE") or row.get("pe") or None
yield idx, item
idx += 1
def _collect_stats(self, train_files, dev_files, test_files):
def collect(file_list):
return {lang: _compute_stats(path) for lang, path in file_list}
return {
"train": collect(train_files),
"dev": collect(dev_files),
"test": collect(test_files),
}
def _resolve_data_dir(self) -> str:
"""Find the directory that actually contains the TSV files."""
candidates = []
if self.config.data_dir:
candidates.append(os.path.abspath(self.config.data_dir))
# Directory next to the script (works when files are present in the repo)
candidates.append(os.path.abspath(os.path.dirname(__file__)))
# Parent directory (if the script gets copied to a cache without data)
candidates.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir)))
for cand in candidates:
if os.path.exists(os.path.join(cand, "train.engu.df.short.tsv")):
return cand
raise FileNotFoundError(
f"Could not locate TSV files. Checked: {candidates}. "
"Pass data_dir to load_dataset or set LOW_RESOURCE_QE_DA_DATA_DIR env var."
)
def _log_overview(self, stats: Dict[str, Dict[str, Dict[str, Optional[float]]]]) -> None:
def print_line(msg: str):
logger.info(msg)
print(msg, flush=True)
if self.config.language_pairs and len(self.config.language_pairs) > 1:
for split_name, split_stats in stats.items():
if not split_stats:
print_line(f"[{self.config.name}] split={split_name} | no files found")
continue
total = sum(s["count"] for s in split_stats.values())
mean_mins = [s["mean_stats"]["min"] for s in split_stats.values() if s["mean_stats"]["min"] is not None]
mean_maxs = [s["mean_stats"]["max"] for s in split_stats.values() if s["mean_stats"]["max"] is not None]
z_mins = [s["z_mean_stats"]["min"] for s in split_stats.values() if s["z_mean_stats"]["min"] is not None]
z_maxs = [s["z_mean_stats"]["max"] for s in split_stats.values() if s["z_mean_stats"]["max"] is not None]
if mean_mins and mean_maxs and z_mins and z_maxs:
print_line(
f"[{self.config.name}] split={split_name} | total instances={total} | "
f"DA mean range {min(mean_mins):.3f}–{max(mean_maxs):.3f} | "
f"z_mean range {min(z_mins):.3f}–{max(z_maxs):.3f}"
)
for lang, s in split_stats.items():
mean_stats = s["mean_stats"]
z_stats = s["z_mean_stats"]
print_line(
f" - {lang} | n={s['count']} | DA mean {mean_stats['min']:.3f}–{mean_stats['max']:.3f} "
f"(median {mean_stats['median']:.3f}) | z_mean {z_stats['min']:.3f}–{z_stats['max']:.3f} "
f"(median {z_stats['median']:.3f})"
)
else:
source_lang, target_lang = self.config.language_pair
for split, split_stats in stats.items():
if not split_stats:
print_line(f"Loaded {self.config.name} ({source_lang} → {target_lang}) | split={split} | no files found")
continue
lang = self.config.name
s = split_stats.get(lang) or next(iter(split_stats.values()))
mean_stats = s["mean_stats"]
z_stats = s["z_mean_stats"]
print_line(
f"Loaded {lang} ({source_lang} → {target_lang}) | split={split} | instances={s['count']} "
f"| DA mean range {mean_stats['min']:.3f}–{mean_stats['max']:.3f} (median {mean_stats['median']:.3f}) "
f"| z_mean range {z_stats['min']:.3f}–{z_stats['max']:.3f} (median {z_stats['median']:.3f})"
)
|