|
|
import numpy as np |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from ldf_utils.math.quaternion import * |
|
|
|
|
|
""" |
|
|
Motion data structure: |
|
|
(B: batch size) |
|
|
root_rot_velocity (B, seq_len, 1) |
|
|
root_linear_velocity (B, seq_len, 2) |
|
|
root_y (B, seq_len, 1) |
|
|
ric_data (B, seq_len, (joint_num - 1)*3) |
|
|
rot_data (B, seq_len, (joint_num - 1)*6) |
|
|
local_velocity (B, seq_len, joint_num*3) |
|
|
foot contact (B, seq_len, 4) |
|
|
""" |
|
|
|
|
|
|
|
|
def recover_root_rot_pos(data): |
|
|
|
|
|
rot_vel = data[..., 0] |
|
|
r_rot_ang = torch.zeros_like(rot_vel).to(data.device) |
|
|
"""Get Y-axis rotation from rotation velocity""" |
|
|
r_rot_ang[..., 1:] = rot_vel[..., :-1] |
|
|
r_rot_ang = torch.cumsum(r_rot_ang, dim=-1) |
|
|
|
|
|
r_rot_quat = torch.zeros(data.shape[:-1] + (4,)).to(data.device) |
|
|
r_rot_quat[..., 0] = torch.cos(r_rot_ang) |
|
|
r_rot_quat[..., 2] = torch.sin(r_rot_ang) |
|
|
|
|
|
r_pos = torch.zeros(data.shape[:-1] + (3,)).to(data.device) |
|
|
r_pos[..., 1:, [0, 2]] = data[..., :-1, 1:3] |
|
|
"""Add Y-axis rotation to root position""" |
|
|
r_pos = qrot(qinv(r_rot_quat), r_pos) |
|
|
|
|
|
r_pos = torch.cumsum(r_pos, dim=-2) |
|
|
|
|
|
r_pos[..., 1] = data[..., 3] |
|
|
return r_rot_quat, r_pos |
|
|
|
|
|
|
|
|
def recover_joint_positions_263(data: np.ndarray, joints_num) -> np.ndarray: |
|
|
""" |
|
|
Recovers 3D joint positions from the rotation-invariant local positions (ric_data). |
|
|
This is the most direct way to get the skeleton for animation. |
|
|
""" |
|
|
feature_vec = torch.from_numpy(data).unsqueeze(0).float() |
|
|
r_rot_quat, r_pos = recover_root_rot_pos(feature_vec) |
|
|
positions = feature_vec[..., 4 : (joints_num - 1) * 3 + 4] |
|
|
positions = positions.view(positions.shape[:-1] + (-1, 3)) |
|
|
"""Add Y-axis rotation to local joints""" |
|
|
positions = qrot( |
|
|
qinv(r_rot_quat[..., None, :]).expand(positions.shape[:-1] + (4,)), positions |
|
|
) |
|
|
"""Add root XZ to joints""" |
|
|
positions[..., 0] += r_pos[..., 0:1] |
|
|
positions[..., 2] += r_pos[..., 2:3] |
|
|
"""Concatenate root and joints""" |
|
|
positions = torch.cat([r_pos.unsqueeze(-2), positions], dim=-2) |
|
|
joints_np = positions.squeeze(0).detach().cpu().numpy() |
|
|
return joints_np |
|
|
|
|
|
|
|
|
class StreamJointRecovery263: |
|
|
""" |
|
|
Stream version of recover_joint_positions_263 that processes one frame at a time. |
|
|
Maintains cumulative state for rotation angles and positions. |
|
|
|
|
|
Key insight: The batch version uses PREVIOUS frame's velocity for the current frame, |
|
|
so we need to delay the velocity application by one frame. |
|
|
|
|
|
Args: |
|
|
joints_num: Number of joints in the skeleton |
|
|
smoothing_alpha: EMA smoothing factor (0.0 to 1.0) |
|
|
- 1.0 = no smoothing (default), output follows input exactly |
|
|
- 0.0 = infinite smoothing, output never changes |
|
|
- Recommended values: 0.3-0.7 for visible smoothing |
|
|
- Formula: smoothed = alpha * current + (1 - alpha) * previous |
|
|
""" |
|
|
|
|
|
def __init__(self, joints_num: int, smoothing_alpha: float = 1.0): |
|
|
self.joints_num = joints_num |
|
|
self.smoothing_alpha = np.clip(smoothing_alpha, 0.0, 1.0) |
|
|
self.reset() |
|
|
|
|
|
def reset(self): |
|
|
"""Reset the accumulated state""" |
|
|
self.r_rot_ang_accum = 0.0 |
|
|
self.r_pos_accum = np.array([0.0, 0.0, 0.0]) |
|
|
|
|
|
self.prev_rot_vel = 0.0 |
|
|
self.prev_linear_vel = np.array([0.0, 0.0]) |
|
|
|
|
|
self.prev_smoothed_joints = None |
|
|
|
|
|
def process_frame(self, frame_data: np.ndarray) -> np.ndarray: |
|
|
""" |
|
|
Process a single frame and return joint positions for that frame. |
|
|
|
|
|
Args: |
|
|
frame_data: numpy array of shape (263,) for a single frame |
|
|
|
|
|
Returns: |
|
|
joints: numpy array of shape (joints_num, 3) representing joint positions |
|
|
""" |
|
|
|
|
|
feature_vec = torch.from_numpy(frame_data).float() |
|
|
|
|
|
|
|
|
curr_rot_vel = feature_vec[0].item() |
|
|
curr_linear_vel = feature_vec[1:3].numpy() |
|
|
|
|
|
|
|
|
|
|
|
self.r_rot_ang_accum += self.prev_rot_vel |
|
|
|
|
|
|
|
|
r_rot_quat = torch.zeros(4) |
|
|
r_rot_quat[0] = np.cos(self.r_rot_ang_accum) |
|
|
r_rot_quat[2] = np.sin(self.r_rot_ang_accum) |
|
|
|
|
|
|
|
|
r_vel = np.array([self.prev_linear_vel[0], 0.0, self.prev_linear_vel[1]]) |
|
|
|
|
|
|
|
|
r_vel_torch = torch.from_numpy(r_vel).float() |
|
|
r_vel_rotated = qrot(qinv(r_rot_quat).unsqueeze(0), r_vel_torch.unsqueeze(0)) |
|
|
r_vel_rotated = r_vel_rotated.squeeze(0).numpy() |
|
|
|
|
|
|
|
|
self.r_pos_accum += r_vel_rotated |
|
|
|
|
|
|
|
|
r_pos = self.r_pos_accum.copy() |
|
|
r_pos[1] = feature_vec[3].item() |
|
|
|
|
|
|
|
|
positions = feature_vec[4 : (self.joints_num - 1) * 3 + 4] |
|
|
positions = positions.view(-1, 3) |
|
|
|
|
|
|
|
|
r_rot_quat_expanded = ( |
|
|
qinv(r_rot_quat).unsqueeze(0).expand(positions.shape[0], 4) |
|
|
) |
|
|
positions = qrot(r_rot_quat_expanded, positions) |
|
|
|
|
|
|
|
|
positions[:, 0] += r_pos[0] |
|
|
positions[:, 2] += r_pos[2] |
|
|
|
|
|
|
|
|
r_pos_torch = torch.from_numpy(r_pos).float() |
|
|
positions = torch.cat([r_pos_torch.unsqueeze(0), positions], dim=0) |
|
|
|
|
|
|
|
|
joints_np = positions.detach().cpu().numpy() |
|
|
|
|
|
|
|
|
if self.smoothing_alpha < 1.0: |
|
|
if self.prev_smoothed_joints is None: |
|
|
|
|
|
self.prev_smoothed_joints = joints_np.copy() |
|
|
else: |
|
|
|
|
|
joints_np = ( |
|
|
self.smoothing_alpha * joints_np |
|
|
+ (1.0 - self.smoothing_alpha) * self.prev_smoothed_joints |
|
|
) |
|
|
self.prev_smoothed_joints = joints_np.copy() |
|
|
|
|
|
|
|
|
self.prev_rot_vel = curr_rot_vel |
|
|
self.prev_linear_vel = curr_linear_vel |
|
|
|
|
|
return joints_np |
|
|
|
|
|
|
|
|
def accumulate_rotations(relative_rotations): |
|
|
R_total = [relative_rotations[0]] |
|
|
for R_rel in relative_rotations[1:]: |
|
|
R_total.append(np.matmul(R_rel, R_total[-1])) |
|
|
|
|
|
return np.array(R_total) |
|
|
|
|
|
|
|
|
def recover_from_local_position(final_x, njoint): |
|
|
nfrm, _ = final_x.shape |
|
|
positions_no_heading = final_x[:, 8 : 8 + 3 * njoint].reshape( |
|
|
nfrm, -1, 3 |
|
|
) |
|
|
velocities_root_xy_no_heading = final_x[:, :2] |
|
|
global_heading_diff_rot = final_x[:, 2:8] |
|
|
|
|
|
|
|
|
global_heading_rot = accumulate_rotations( |
|
|
rotation_6d_to_matrix(torch.from_numpy(global_heading_diff_rot)).numpy() |
|
|
) |
|
|
inv_global_heading_rot = np.transpose(global_heading_rot, (0, 2, 1)) |
|
|
|
|
|
positions_with_heading = np.matmul( |
|
|
np.repeat(inv_global_heading_rot[:, None, :, :], njoint, axis=1), |
|
|
positions_no_heading[..., None], |
|
|
).squeeze(-1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
velocities_root_xyz_no_heading = np.zeros( |
|
|
( |
|
|
velocities_root_xy_no_heading.shape[0], |
|
|
3, |
|
|
) |
|
|
) |
|
|
velocities_root_xyz_no_heading[:, 0] = velocities_root_xy_no_heading[:, 0] |
|
|
velocities_root_xyz_no_heading[:, 2] = velocities_root_xy_no_heading[:, 1] |
|
|
velocities_root_xyz_no_heading[1:, :] = np.matmul( |
|
|
inv_global_heading_rot[:-1], velocities_root_xyz_no_heading[1:, :, None] |
|
|
).squeeze(-1) |
|
|
|
|
|
root_translation = np.cumsum(velocities_root_xyz_no_heading, axis=0) |
|
|
|
|
|
|
|
|
positions_with_heading[:, :, 0] += root_translation[:, 0:1] |
|
|
positions_with_heading[:, :, 2] += root_translation[:, 2:] |
|
|
|
|
|
return positions_with_heading |
|
|
|
|
|
|
|
|
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor: |
|
|
a1, a2 = d6[..., :3], d6[..., 3:] |
|
|
b1 = F.normalize(a1, dim=-1) |
|
|
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1 |
|
|
b2 = F.normalize(b2, dim=-1) |
|
|
b3 = torch.cross(b1, b2, dim=-1) |
|
|
return torch.stack((b1, b2, b3), dim=-2) |
|
|
|
|
|
|
|
|
def _copysign(a, b): |
|
|
signs_differ = (a < 0) != (b < 0) |
|
|
return torch.where(signs_differ, -a, a) |
|
|
|
|
|
|
|
|
def _sqrt_positive_part(x): |
|
|
ret = torch.zeros_like(x) |
|
|
positive_mask = x > 0 |
|
|
ret[positive_mask] = torch.sqrt(x[positive_mask]) |
|
|
return ret |
|
|
|
|
|
|
|
|
def matrix_to_quaternion(matrix): |
|
|
if matrix.size(-1) != 3 or matrix.size(-2) != 3: |
|
|
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.") |
|
|
m00 = matrix[..., 0, 0] |
|
|
m11 = matrix[..., 1, 1] |
|
|
m22 = matrix[..., 2, 2] |
|
|
o0 = 0.5 * _sqrt_positive_part(1 + m00 + m11 + m22) |
|
|
x = 0.5 * _sqrt_positive_part(1 + m00 - m11 - m22) |
|
|
y = 0.5 * _sqrt_positive_part(1 - m00 + m11 - m22) |
|
|
z = 0.5 * _sqrt_positive_part(1 - m00 - m11 + m22) |
|
|
o1 = _copysign(x, matrix[..., 2, 1] - matrix[..., 1, 2]) |
|
|
o2 = _copysign(y, matrix[..., 0, 2] - matrix[..., 2, 0]) |
|
|
o3 = _copysign(z, matrix[..., 1, 0] - matrix[..., 0, 1]) |
|
|
return torch.stack((o0, o1, o2, o3), -1) |
|
|
|
|
|
|
|
|
def quaternion_to_axis_angle(quaternions): |
|
|
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True) |
|
|
half_angles = torch.atan2(norms, quaternions[..., :1]) |
|
|
angles = 2 * half_angles |
|
|
eps = 1e-6 |
|
|
small_angles = angles.abs() < eps |
|
|
sin_half_angles_over_angles = torch.empty_like(angles) |
|
|
sin_half_angles_over_angles[~small_angles] = ( |
|
|
torch.sin(half_angles[~small_angles]) / angles[~small_angles] |
|
|
) |
|
|
|
|
|
|
|
|
sin_half_angles_over_angles[small_angles] = ( |
|
|
0.5 - (angles[small_angles] * angles[small_angles]) / 48 |
|
|
) |
|
|
return quaternions[..., 1:] / sin_half_angles_over_angles |
|
|
|
|
|
|
|
|
def matrix_to_axis_angle(matrix): |
|
|
return quaternion_to_axis_angle(matrix_to_quaternion(matrix)) |
|
|
|
|
|
|
|
|
def rotations_matrix_to_smpl85(rotations_matrix, translation): |
|
|
nfrm, njoint, _, _ = rotations_matrix.shape |
|
|
axis_angle = ( |
|
|
matrix_to_axis_angle(torch.from_numpy(rotations_matrix)) |
|
|
.numpy() |
|
|
.reshape(nfrm, -1) |
|
|
) |
|
|
smpl_85 = np.concatenate( |
|
|
[axis_angle, np.zeros((nfrm, 6)), translation, np.zeros((nfrm, 10))], axis=-1 |
|
|
) |
|
|
return smpl_85 |
|
|
|
|
|
|
|
|
def recover_from_local_rotation(final_x, njoint): |
|
|
nfrm, _ = final_x.shape |
|
|
rotations_matrix = rotation_6d_to_matrix( |
|
|
torch.from_numpy(final_x[:, 8 + 6 * njoint : 8 + 12 * njoint]).reshape( |
|
|
nfrm, -1, 6 |
|
|
) |
|
|
).numpy() |
|
|
global_heading_diff_rot = final_x[:, 2:8] |
|
|
velocities_root_xy_no_heading = final_x[:, :2] |
|
|
positions_no_heading = final_x[:, 8 : 8 + 3 * njoint].reshape(nfrm, -1, 3) |
|
|
height = positions_no_heading[:, 0, 1] |
|
|
|
|
|
global_heading_rot = accumulate_rotations( |
|
|
rotation_6d_to_matrix(torch.from_numpy(global_heading_diff_rot)).numpy() |
|
|
) |
|
|
inv_global_heading_rot = np.transpose(global_heading_rot, (0, 2, 1)) |
|
|
|
|
|
rotations_matrix[:, 0, ...] = np.matmul( |
|
|
inv_global_heading_rot, rotations_matrix[:, 0, ...] |
|
|
) |
|
|
velocities_root_xyz_no_heading = np.zeros( |
|
|
( |
|
|
velocities_root_xy_no_heading.shape[0], |
|
|
3, |
|
|
) |
|
|
) |
|
|
velocities_root_xyz_no_heading[:, 0] = velocities_root_xy_no_heading[:, 0] |
|
|
velocities_root_xyz_no_heading[:, 2] = velocities_root_xy_no_heading[:, 1] |
|
|
velocities_root_xyz_no_heading[1:, :] = np.matmul( |
|
|
inv_global_heading_rot[:-1], velocities_root_xyz_no_heading[1:, :, None] |
|
|
).squeeze(-1) |
|
|
root_translation = np.cumsum(velocities_root_xyz_no_heading, axis=0) |
|
|
root_translation[:, 1] = height |
|
|
smpl_85 = rotations_matrix_to_smpl85(rotations_matrix, root_translation) |
|
|
return smpl_85 |
|
|
|
|
|
|
|
|
def recover_joint_positions_272(data: np.ndarray, joints_num) -> np.ndarray: |
|
|
return recover_from_local_position(data, joints_num) |
|
|
|
|
|
|
|
|
def convert_motion_to_joints( |
|
|
motion_data: np.ndarray, |
|
|
dim: int, |
|
|
mean: np.ndarray = None, |
|
|
std: np.ndarray = None, |
|
|
joints_num=22, |
|
|
): |
|
|
""" |
|
|
Convert Kx263 dim or Kx272 dim motion data to Kx22x3 joint positions. |
|
|
Args: |
|
|
motion_data: numpy array of shape (K, 263) or (K, 272) where K is number of frames |
|
|
Returns: |
|
|
joints: numpy array of shape (K, 22, 3) representing joint positions |
|
|
""" |
|
|
if mean is not None and std is not None: |
|
|
motion_data = motion_data * std + mean |
|
|
if dim == 263: |
|
|
recovered_positions = recover_joint_positions_263(motion_data, joints_num) |
|
|
elif dim == 272: |
|
|
recovered_positions = recover_joint_positions_272(motion_data, joints_num) |
|
|
else: |
|
|
raise ValueError(f"Unsupported motion data dimension: {dim}") |
|
|
return recovered_positions |
|
|
|