Commit
·
82d5f99
1
Parent(s):
3a98c3d
Add EMA smoothing support for joint positions
Browse files- Add smoothing_alpha parameter to model() API (default=1.0, no smoothing)
- Implement EMA smoothing in StreamJointRecovery263 class
- Support batch generation with independent smoothing per sample
- Update README with usage examples and API documentation
- Add .gitignore for cache and temporary files
Usage: model(text, length=60, output_joints=True, smoothing_alpha=0.5)
- .gitignore +54 -0
- README.md +14 -4
- hf_pipeline.py +22 -18
- ldf_utils/motion_process.py +25 -1
.gitignore
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python cache
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
|
| 8 |
+
# Virtual environments
|
| 9 |
+
venv/
|
| 10 |
+
env/
|
| 11 |
+
ENV/
|
| 12 |
+
.venv
|
| 13 |
+
|
| 14 |
+
# PyTorch/Model cache
|
| 15 |
+
*.pth~
|
| 16 |
+
*.safetensors~
|
| 17 |
+
checkpoint/
|
| 18 |
+
checkpoints/
|
| 19 |
+
|
| 20 |
+
# Hugging Face cache
|
| 21 |
+
.cache/
|
| 22 |
+
huggingface_cache/
|
| 23 |
+
|
| 24 |
+
# Generated outputs
|
| 25 |
+
outputs/
|
| 26 |
+
generated_motions/
|
| 27 |
+
*.npy
|
| 28 |
+
*.pkl
|
| 29 |
+
|
| 30 |
+
# IDE
|
| 31 |
+
.vscode/
|
| 32 |
+
.idea/
|
| 33 |
+
*.swp
|
| 34 |
+
*.swo
|
| 35 |
+
*~
|
| 36 |
+
|
| 37 |
+
# OS
|
| 38 |
+
.DS_Store
|
| 39 |
+
Thumbs.db
|
| 40 |
+
|
| 41 |
+
# Jupyter
|
| 42 |
+
.ipynb_checkpoints/
|
| 43 |
+
*.ipynb
|
| 44 |
+
|
| 45 |
+
# Logs
|
| 46 |
+
*.log
|
| 47 |
+
logs/
|
| 48 |
+
wandb/
|
| 49 |
+
|
| 50 |
+
# Test outputs
|
| 51 |
+
test_output/
|
| 52 |
+
test_results/
|
| 53 |
+
tmp/
|
| 54 |
+
|
README.md
CHANGED
|
@@ -36,7 +36,7 @@ The model consists of three main components:
|
|
| 36 |
- Input: Natural language text
|
| 37 |
- Output: Motion sequences in two formats:
|
| 38 |
- 263-dimensional HumanML3D features (default)
|
| 39 |
-
- 22×3 joint coordinates (optional)
|
| 40 |
- Latent dimension: 4
|
| 41 |
- Upsampling factor: 4× (VAE decoder)
|
| 42 |
- Frame rate: 20 FPS
|
|
@@ -85,8 +85,8 @@ model = AutoModel.from_pretrained(
|
|
| 85 |
motion = model("a person walking forward", length=60)
|
| 86 |
print(f"Generated motion: {motion.shape}") # (~240, 263)
|
| 87 |
|
| 88 |
-
# Generate motion as joint coordinates (22 joints × 3 coords)
|
| 89 |
-
motion_joints = model("a person walking forward", length=60, output_joints=True)
|
| 90 |
print(f"Generated joints: {motion_joints.shape}") # (~240, 22, 3)
|
| 91 |
```
|
| 92 |
|
|
@@ -123,7 +123,7 @@ print(f"Transition motion: {motion[0].shape}")
|
|
| 123 |
|
| 124 |
## API Reference
|
| 125 |
|
| 126 |
-
### `model(text, length=60, text_end=None, num_denoise_steps=None, output_joints=False)`
|
| 127 |
|
| 128 |
Generate motion sequences from text descriptions.
|
| 129 |
|
|
@@ -153,6 +153,12 @@ Generate motion sequences from text descriptions.
|
|
| 153 |
- `False`: Returns 263-dimensional HumanML3D features
|
| 154 |
- `True`: Returns 22×3 joint coordinates for direct visualization
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
**Returns:**
|
| 157 |
- Single motion:
|
| 158 |
- `output_joints=False`: `numpy.ndarray` of shape `(frames, 263)`
|
|
@@ -178,6 +184,10 @@ motion = model(
|
|
| 178 |
) # Returns list with 1 array of shape (240, 263)
|
| 179 |
```
|
| 180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
## Citation
|
| 182 |
|
| 183 |
If you use this model in your research, please cite:
|
|
|
|
| 36 |
- Input: Natural language text
|
| 37 |
- Output: Motion sequences in two formats:
|
| 38 |
- 263-dimensional HumanML3D features (default)
|
| 39 |
+
- 22×3 joint coordinates (optional, with EMA smoothing support)
|
| 40 |
- Latent dimension: 4
|
| 41 |
- Upsampling factor: 4× (VAE decoder)
|
| 42 |
- Frame rate: 20 FPS
|
|
|
|
| 85 |
motion = model("a person walking forward", length=60)
|
| 86 |
print(f"Generated motion: {motion.shape}") # (~240, 263)
|
| 87 |
|
| 88 |
+
# Generate motion as joint coordinates (22 joints × 3 coords) with ema (alpha: 0.0-1.0)
|
| 89 |
+
motion_joints = model("a person walking forward", length=60, output_joints=True, smoothing_alpha=0.5)
|
| 90 |
print(f"Generated joints: {motion_joints.shape}") # (~240, 22, 3)
|
| 91 |
```
|
| 92 |
|
|
|
|
| 123 |
|
| 124 |
## API Reference
|
| 125 |
|
| 126 |
+
### `model(text, length=60, text_end=None, num_denoise_steps=None, output_joints=False, smoothing_alpha=1.0)`
|
| 127 |
|
| 128 |
Generate motion sequences from text descriptions.
|
| 129 |
|
|
|
|
| 153 |
- `False`: Returns 263-dimensional HumanML3D features
|
| 154 |
- `True`: Returns 22×3 joint coordinates for direct visualization
|
| 155 |
|
| 156 |
+
- **smoothing_alpha** (`float`, default=1.0): EMA smoothing factor for joint positions (only used when `output_joints=True`)
|
| 157 |
+
- `1.0`: No smoothing (default)
|
| 158 |
+
- `0.5`: Medium smoothing (recommended for smoother animations)
|
| 159 |
+
- `0.0`: Maximum smoothing
|
| 160 |
+
- Range: 0.0 to 1.0
|
| 161 |
+
|
| 162 |
**Returns:**
|
| 163 |
- Single motion:
|
| 164 |
- `output_joints=False`: `numpy.ndarray` of shape `(frames, 263)`
|
|
|
|
| 184 |
) # Returns list with 1 array of shape (240, 263)
|
| 185 |
```
|
| 186 |
|
| 187 |
+
## Update History
|
| 188 |
+
|
| 189 |
+
- **2025/12/8**: Added EMA smoothing option for joint positions during rendering
|
| 190 |
+
|
| 191 |
## Citation
|
| 192 |
|
| 193 |
If you use this model in your research, please cite:
|
hf_pipeline.py
CHANGED
|
@@ -161,7 +161,8 @@ class LDFModel(PreTrainedModel):
|
|
| 161 |
length: Union[int, List[int]] = 60,
|
| 162 |
text_end: Optional[Union[List[int], List[List[int]]]] = None,
|
| 163 |
num_denoise_steps: Optional[int] = None,
|
| 164 |
-
output_joints: bool = False
|
|
|
|
| 165 |
):
|
| 166 |
"""
|
| 167 |
Generate motion sequences
|
|
@@ -175,6 +176,9 @@ class LDFModel(PreTrainedModel):
|
|
| 175 |
text_end: Token positions for text switching
|
| 176 |
num_denoise_steps: Number of denoising steps
|
| 177 |
output_joints: If True, output 22×3 joint coordinates; if False (default), output 263-dim HumanML3D features
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
Returns:
|
| 180 |
numpy.ndarray or list of arrays
|
|
@@ -220,31 +224,31 @@ class LDFModel(PreTrainedModel):
|
|
| 220 |
decoded_results = []
|
| 221 |
joints_results = [] if output_joints else None
|
| 222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
for i, generated in enumerate(generated_batch):
|
| 224 |
if generated is not None and torch.is_tensor(generated):
|
| 225 |
# Decode with VAE (following generate_ldf.py line 130)
|
| 226 |
decoded_g = self.vae.decode(generated[None, :])[0]
|
| 227 |
|
| 228 |
if output_joints:
|
| 229 |
-
#
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
# Import convert_motion_to_joints from ldf_utils
|
| 233 |
-
import importlib.util
|
| 234 |
-
import numpy as np
|
| 235 |
-
utils_spec = importlib.util.spec_from_file_location(
|
| 236 |
-
"motion_process",
|
| 237 |
-
os.path.join(model_dir, "ldf_utils", "motion_process.py")
|
| 238 |
-
)
|
| 239 |
-
motion_process_module = importlib.util.module_from_spec(utils_spec)
|
| 240 |
-
utils_spec.loader.exec_module(motion_process_module)
|
| 241 |
-
|
| 242 |
-
# Convert to joints using convert_motion_to_joints
|
| 243 |
decoded_np = decoded_g.cpu().numpy()
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
decoded_np, dim=263
|
| 247 |
)
|
|
|
|
|
|
|
| 248 |
joints_results.append(joints)
|
| 249 |
else:
|
| 250 |
decoded_results.append(decoded_g.cpu().numpy())
|
|
|
|
| 161 |
length: Union[int, List[int]] = 60,
|
| 162 |
text_end: Optional[Union[List[int], List[List[int]]]] = None,
|
| 163 |
num_denoise_steps: Optional[int] = None,
|
| 164 |
+
output_joints: bool = False,
|
| 165 |
+
smoothing_alpha: float = 1.0
|
| 166 |
):
|
| 167 |
"""
|
| 168 |
Generate motion sequences
|
|
|
|
| 176 |
text_end: Token positions for text switching
|
| 177 |
num_denoise_steps: Number of denoising steps
|
| 178 |
output_joints: If True, output 22×3 joint coordinates; if False (default), output 263-dim HumanML3D features
|
| 179 |
+
smoothing_alpha: EMA smoothing factor for joint positions (0.0-1.0, default=1.0 no smoothing)
|
| 180 |
+
- Only used when output_joints=True
|
| 181 |
+
- Recommended: 0.5 for smoother animations
|
| 182 |
|
| 183 |
Returns:
|
| 184 |
numpy.ndarray or list of arrays
|
|
|
|
| 224 |
decoded_results = []
|
| 225 |
joints_results = [] if output_joints else None
|
| 226 |
|
| 227 |
+
# Import motion processing module once if needed
|
| 228 |
+
if output_joints:
|
| 229 |
+
import importlib.util
|
| 230 |
+
import numpy as np
|
| 231 |
+
utils_spec = importlib.util.spec_from_file_location(
|
| 232 |
+
"motion_process",
|
| 233 |
+
os.path.join(self.model_dir, "ldf_utils", "motion_process.py")
|
| 234 |
+
)
|
| 235 |
+
motion_process_module = importlib.util.module_from_spec(utils_spec)
|
| 236 |
+
utils_spec.loader.exec_module(motion_process_module)
|
| 237 |
+
|
| 238 |
for i, generated in enumerate(generated_batch):
|
| 239 |
if generated is not None and torch.is_tensor(generated):
|
| 240 |
# Decode with VAE (following generate_ldf.py line 130)
|
| 241 |
decoded_g = self.vae.decode(generated[None, :])[0]
|
| 242 |
|
| 243 |
if output_joints:
|
| 244 |
+
# Convert to joints using StreamJointRecovery263 with smoothing
|
| 245 |
+
# Create a new recovery instance for each sample to maintain independent state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
decoded_np = decoded_g.cpu().numpy()
|
| 247 |
+
recovery = motion_process_module.StreamJointRecovery263(
|
| 248 |
+
joints_num=22, smoothing_alpha=smoothing_alpha
|
|
|
|
| 249 |
)
|
| 250 |
+
joints = [recovery.process_frame(frame) for frame in decoded_np]
|
| 251 |
+
joints = np.array(joints)
|
| 252 |
joints_results.append(joints)
|
| 253 |
else:
|
| 254 |
decoded_results.append(decoded_g.cpu().numpy())
|
ldf_utils/motion_process.py
CHANGED
|
@@ -69,10 +69,19 @@ class StreamJointRecovery263:
|
|
| 69 |
|
| 70 |
Key insight: The batch version uses PREVIOUS frame's velocity for the current frame,
|
| 71 |
so we need to delay the velocity application by one frame.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
"""
|
| 73 |
|
| 74 |
-
def __init__(self, joints_num: int):
|
| 75 |
self.joints_num = joints_num
|
|
|
|
| 76 |
self.reset()
|
| 77 |
|
| 78 |
def reset(self):
|
|
@@ -82,6 +91,8 @@ class StreamJointRecovery263:
|
|
| 82 |
# Store previous frame's velocities for delayed application
|
| 83 |
self.prev_rot_vel = 0.0
|
| 84 |
self.prev_linear_vel = np.array([0.0, 0.0])
|
|
|
|
|
|
|
| 85 |
|
| 86 |
def process_frame(self, frame_data: np.ndarray) -> np.ndarray:
|
| 87 |
"""
|
|
@@ -145,6 +156,19 @@ class StreamJointRecovery263:
|
|
| 145 |
# Convert to numpy
|
| 146 |
joints_np = positions.detach().cpu().numpy()
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
# Store current velocities for next frame
|
| 149 |
self.prev_rot_vel = curr_rot_vel
|
| 150 |
self.prev_linear_vel = curr_linear_vel
|
|
|
|
| 69 |
|
| 70 |
Key insight: The batch version uses PREVIOUS frame's velocity for the current frame,
|
| 71 |
so we need to delay the velocity application by one frame.
|
| 72 |
+
|
| 73 |
+
Args:
|
| 74 |
+
joints_num: Number of joints in the skeleton
|
| 75 |
+
smoothing_alpha: EMA smoothing factor (0.0 to 1.0)
|
| 76 |
+
- 1.0 = no smoothing (default), output follows input exactly
|
| 77 |
+
- 0.0 = infinite smoothing, output never changes
|
| 78 |
+
- Recommended values: 0.3-0.7 for visible smoothing
|
| 79 |
+
- Formula: smoothed = alpha * current + (1 - alpha) * previous
|
| 80 |
"""
|
| 81 |
|
| 82 |
+
def __init__(self, joints_num: int, smoothing_alpha: float = 1.0):
|
| 83 |
self.joints_num = joints_num
|
| 84 |
+
self.smoothing_alpha = np.clip(smoothing_alpha, 0.0, 1.0)
|
| 85 |
self.reset()
|
| 86 |
|
| 87 |
def reset(self):
|
|
|
|
| 91 |
# Store previous frame's velocities for delayed application
|
| 92 |
self.prev_rot_vel = 0.0
|
| 93 |
self.prev_linear_vel = np.array([0.0, 0.0])
|
| 94 |
+
# Store previous smoothed joints for EMA
|
| 95 |
+
self.prev_smoothed_joints = None
|
| 96 |
|
| 97 |
def process_frame(self, frame_data: np.ndarray) -> np.ndarray:
|
| 98 |
"""
|
|
|
|
| 156 |
# Convert to numpy
|
| 157 |
joints_np = positions.detach().cpu().numpy()
|
| 158 |
|
| 159 |
+
# Apply EMA smoothing if enabled
|
| 160 |
+
if self.smoothing_alpha < 1.0:
|
| 161 |
+
if self.prev_smoothed_joints is None:
|
| 162 |
+
# First frame, no smoothing possible
|
| 163 |
+
self.prev_smoothed_joints = joints_np.copy()
|
| 164 |
+
else:
|
| 165 |
+
# EMA: smoothed = alpha * current + (1 - alpha) * previous
|
| 166 |
+
joints_np = (
|
| 167 |
+
self.smoothing_alpha * joints_np
|
| 168 |
+
+ (1.0 - self.smoothing_alpha) * self.prev_smoothed_joints
|
| 169 |
+
)
|
| 170 |
+
self.prev_smoothed_joints = joints_np.copy()
|
| 171 |
+
|
| 172 |
# Store current velocities for next frame
|
| 173 |
self.prev_rot_vel = curr_rot_vel
|
| 174 |
self.prev_linear_vel = curr_linear_vel
|