File size: 13,339 Bytes
ebc7f2e 82d5f99 ebc7f2e 82d5f99 ebc7f2e 82d5f99 ebc7f2e 82d5f99 ebc7f2e 82d5f99 ebc7f2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import numpy as np
import torch
import torch.nn.functional as F
from ldf_utils.math.quaternion import *
"""
Motion data structure:
(B: batch size)
root_rot_velocity (B, seq_len, 1)
root_linear_velocity (B, seq_len, 2)
root_y (B, seq_len, 1)
ric_data (B, seq_len, (joint_num - 1)*3)
rot_data (B, seq_len, (joint_num - 1)*6)
local_velocity (B, seq_len, joint_num*3)
foot contact (B, seq_len, 4)
"""
def recover_root_rot_pos(data):
# recover root rotation and position
rot_vel = data[..., 0]
r_rot_ang = torch.zeros_like(rot_vel).to(data.device)
"""Get Y-axis rotation from rotation velocity"""
r_rot_ang[..., 1:] = rot_vel[..., :-1]
r_rot_ang = torch.cumsum(r_rot_ang, dim=-1)
r_rot_quat = torch.zeros(data.shape[:-1] + (4,)).to(data.device)
r_rot_quat[..., 0] = torch.cos(r_rot_ang)
r_rot_quat[..., 2] = torch.sin(r_rot_ang)
r_pos = torch.zeros(data.shape[:-1] + (3,)).to(data.device)
r_pos[..., 1:, [0, 2]] = data[..., :-1, 1:3]
"""Add Y-axis rotation to root position"""
r_pos = qrot(qinv(r_rot_quat), r_pos)
r_pos = torch.cumsum(r_pos, dim=-2)
r_pos[..., 1] = data[..., 3]
return r_rot_quat, r_pos
def recover_joint_positions_263(data: np.ndarray, joints_num) -> np.ndarray:
"""
Recovers 3D joint positions from the rotation-invariant local positions (ric_data).
This is the most direct way to get the skeleton for animation.
"""
feature_vec = torch.from_numpy(data).unsqueeze(0).float()
r_rot_quat, r_pos = recover_root_rot_pos(feature_vec)
positions = feature_vec[..., 4 : (joints_num - 1) * 3 + 4]
positions = positions.view(positions.shape[:-1] + (-1, 3))
"""Add Y-axis rotation to local joints"""
positions = qrot(
qinv(r_rot_quat[..., None, :]).expand(positions.shape[:-1] + (4,)), positions
)
"""Add root XZ to joints"""
positions[..., 0] += r_pos[..., 0:1]
positions[..., 2] += r_pos[..., 2:3]
"""Concatenate root and joints"""
positions = torch.cat([r_pos.unsqueeze(-2), positions], dim=-2)
joints_np = positions.squeeze(0).detach().cpu().numpy()
return joints_np
class StreamJointRecovery263:
"""
Stream version of recover_joint_positions_263 that processes one frame at a time.
Maintains cumulative state for rotation angles and positions.
Key insight: The batch version uses PREVIOUS frame's velocity for the current frame,
so we need to delay the velocity application by one frame.
Args:
joints_num: Number of joints in the skeleton
smoothing_alpha: EMA smoothing factor (0.0 to 1.0)
- 1.0 = no smoothing (default), output follows input exactly
- 0.0 = infinite smoothing, output never changes
- Recommended values: 0.3-0.7 for visible smoothing
- Formula: smoothed = alpha * current + (1 - alpha) * previous
"""
def __init__(self, joints_num: int, smoothing_alpha: float = 1.0):
self.joints_num = joints_num
self.smoothing_alpha = np.clip(smoothing_alpha, 0.0, 1.0)
self.reset()
def reset(self):
"""Reset the accumulated state"""
self.r_rot_ang_accum = 0.0
self.r_pos_accum = np.array([0.0, 0.0, 0.0])
# Store previous frame's velocities for delayed application
self.prev_rot_vel = 0.0
self.prev_linear_vel = np.array([0.0, 0.0])
# Store previous smoothed joints for EMA
self.prev_smoothed_joints = None
def process_frame(self, frame_data: np.ndarray) -> np.ndarray:
"""
Process a single frame and return joint positions for that frame.
Args:
frame_data: numpy array of shape (263,) for a single frame
Returns:
joints: numpy array of shape (joints_num, 3) representing joint positions
"""
# Convert to torch tensor
feature_vec = torch.from_numpy(frame_data).float()
# Extract current frame's velocities (will be used in NEXT frame)
curr_rot_vel = feature_vec[0].item()
curr_linear_vel = feature_vec[1:3].numpy()
# Update accumulated rotation angle with PREVIOUS frame's velocity FIRST
# This matches the batch processing: r_rot_ang[i] uses rot_vel[i-1]
self.r_rot_ang_accum += self.prev_rot_vel
# Calculate current rotation quaternion using updated accumulated angle
r_rot_quat = torch.zeros(4)
r_rot_quat[0] = np.cos(self.r_rot_ang_accum)
r_rot_quat[2] = np.sin(self.r_rot_ang_accum)
# Create velocity vector with Y=0 using PREVIOUS frame's velocity
r_vel = np.array([self.prev_linear_vel[0], 0.0, self.prev_linear_vel[1]])
# Apply inverse rotation to velocity using CURRENT rotation
r_vel_torch = torch.from_numpy(r_vel).float()
r_vel_rotated = qrot(qinv(r_rot_quat).unsqueeze(0), r_vel_torch.unsqueeze(0))
r_vel_rotated = r_vel_rotated.squeeze(0).numpy()
# Update accumulated position with rotated velocity
self.r_pos_accum += r_vel_rotated
# Get Y position from data
r_pos = self.r_pos_accum.copy()
r_pos[1] = feature_vec[3].item()
# Extract local joint positions
positions = feature_vec[4 : (self.joints_num - 1) * 3 + 4]
positions = positions.view(-1, 3)
# Apply inverse rotation to local joints
r_rot_quat_expanded = (
qinv(r_rot_quat).unsqueeze(0).expand(positions.shape[0], 4)
)
positions = qrot(r_rot_quat_expanded, positions)
# Add root XZ to joints
positions[:, 0] += r_pos[0]
positions[:, 2] += r_pos[2]
# Concatenate root and joints
r_pos_torch = torch.from_numpy(r_pos).float()
positions = torch.cat([r_pos_torch.unsqueeze(0), positions], dim=0)
# Convert to numpy
joints_np = positions.detach().cpu().numpy()
# Apply EMA smoothing if enabled
if self.smoothing_alpha < 1.0:
if self.prev_smoothed_joints is None:
# First frame, no smoothing possible
self.prev_smoothed_joints = joints_np.copy()
else:
# EMA: smoothed = alpha * current + (1 - alpha) * previous
joints_np = (
self.smoothing_alpha * joints_np
+ (1.0 - self.smoothing_alpha) * self.prev_smoothed_joints
)
self.prev_smoothed_joints = joints_np.copy()
# Store current velocities for next frame
self.prev_rot_vel = curr_rot_vel
self.prev_linear_vel = curr_linear_vel
return joints_np
def accumulate_rotations(relative_rotations):
R_total = [relative_rotations[0]]
for R_rel in relative_rotations[1:]:
R_total.append(np.matmul(R_rel, R_total[-1]))
return np.array(R_total)
def recover_from_local_position(final_x, njoint):
nfrm, _ = final_x.shape
positions_no_heading = final_x[:, 8 : 8 + 3 * njoint].reshape(
nfrm, -1, 3
) # frames, njoints * 3
velocities_root_xy_no_heading = final_x[:, :2] # frames, 2
global_heading_diff_rot = final_x[:, 2:8] # frames, 6
# recover global heading
global_heading_rot = accumulate_rotations(
rotation_6d_to_matrix(torch.from_numpy(global_heading_diff_rot)).numpy()
)
inv_global_heading_rot = np.transpose(global_heading_rot, (0, 2, 1))
# add global heading to position
positions_with_heading = np.matmul(
np.repeat(inv_global_heading_rot[:, None, :, :], njoint, axis=1),
positions_no_heading[..., None],
).squeeze(-1)
# recover root translation
# add heading to velocities_root_xy_no_heading
velocities_root_xyz_no_heading = np.zeros(
(
velocities_root_xy_no_heading.shape[0],
3,
)
)
velocities_root_xyz_no_heading[:, 0] = velocities_root_xy_no_heading[:, 0]
velocities_root_xyz_no_heading[:, 2] = velocities_root_xy_no_heading[:, 1]
velocities_root_xyz_no_heading[1:, :] = np.matmul(
inv_global_heading_rot[:-1], velocities_root_xyz_no_heading[1:, :, None]
).squeeze(-1)
root_translation = np.cumsum(velocities_root_xyz_no_heading, axis=0)
# add root translation
positions_with_heading[:, :, 0] += root_translation[:, 0:1]
positions_with_heading[:, :, 2] += root_translation[:, 2:]
return positions_with_heading
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
a1, a2 = d6[..., :3], d6[..., 3:]
b1 = F.normalize(a1, dim=-1)
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
b2 = F.normalize(b2, dim=-1)
b3 = torch.cross(b1, b2, dim=-1)
return torch.stack((b1, b2, b3), dim=-2)
def _copysign(a, b):
signs_differ = (a < 0) != (b < 0)
return torch.where(signs_differ, -a, a)
def _sqrt_positive_part(x):
ret = torch.zeros_like(x)
positive_mask = x > 0
ret[positive_mask] = torch.sqrt(x[positive_mask])
return ret
def matrix_to_quaternion(matrix):
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.")
m00 = matrix[..., 0, 0]
m11 = matrix[..., 1, 1]
m22 = matrix[..., 2, 2]
o0 = 0.5 * _sqrt_positive_part(1 + m00 + m11 + m22)
x = 0.5 * _sqrt_positive_part(1 + m00 - m11 - m22)
y = 0.5 * _sqrt_positive_part(1 - m00 + m11 - m22)
z = 0.5 * _sqrt_positive_part(1 - m00 - m11 + m22)
o1 = _copysign(x, matrix[..., 2, 1] - matrix[..., 1, 2])
o2 = _copysign(y, matrix[..., 0, 2] - matrix[..., 2, 0])
o3 = _copysign(z, matrix[..., 1, 0] - matrix[..., 0, 1])
return torch.stack((o0, o1, o2, o3), -1)
def quaternion_to_axis_angle(quaternions):
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True)
half_angles = torch.atan2(norms, quaternions[..., :1])
angles = 2 * half_angles
eps = 1e-6
small_angles = angles.abs() < eps
sin_half_angles_over_angles = torch.empty_like(angles)
sin_half_angles_over_angles[~small_angles] = (
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
)
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
# so sin(x/2)/x is about 1/2 - (x*x)/48
sin_half_angles_over_angles[small_angles] = (
0.5 - (angles[small_angles] * angles[small_angles]) / 48
)
return quaternions[..., 1:] / sin_half_angles_over_angles
def matrix_to_axis_angle(matrix):
return quaternion_to_axis_angle(matrix_to_quaternion(matrix))
def rotations_matrix_to_smpl85(rotations_matrix, translation):
nfrm, njoint, _, _ = rotations_matrix.shape
axis_angle = (
matrix_to_axis_angle(torch.from_numpy(rotations_matrix))
.numpy()
.reshape(nfrm, -1)
)
smpl_85 = np.concatenate(
[axis_angle, np.zeros((nfrm, 6)), translation, np.zeros((nfrm, 10))], axis=-1
)
return smpl_85
def recover_from_local_rotation(final_x, njoint):
nfrm, _ = final_x.shape
rotations_matrix = rotation_6d_to_matrix(
torch.from_numpy(final_x[:, 8 + 6 * njoint : 8 + 12 * njoint]).reshape(
nfrm, -1, 6
)
).numpy()
global_heading_diff_rot = final_x[:, 2:8]
velocities_root_xy_no_heading = final_x[:, :2]
positions_no_heading = final_x[:, 8 : 8 + 3 * njoint].reshape(nfrm, -1, 3)
height = positions_no_heading[:, 0, 1]
global_heading_rot = accumulate_rotations(
rotation_6d_to_matrix(torch.from_numpy(global_heading_diff_rot)).numpy()
)
inv_global_heading_rot = np.transpose(global_heading_rot, (0, 2, 1))
# recover root rotation
rotations_matrix[:, 0, ...] = np.matmul(
inv_global_heading_rot, rotations_matrix[:, 0, ...]
)
velocities_root_xyz_no_heading = np.zeros(
(
velocities_root_xy_no_heading.shape[0],
3,
)
)
velocities_root_xyz_no_heading[:, 0] = velocities_root_xy_no_heading[:, 0]
velocities_root_xyz_no_heading[:, 2] = velocities_root_xy_no_heading[:, 1]
velocities_root_xyz_no_heading[1:, :] = np.matmul(
inv_global_heading_rot[:-1], velocities_root_xyz_no_heading[1:, :, None]
).squeeze(-1)
root_translation = np.cumsum(velocities_root_xyz_no_heading, axis=0)
root_translation[:, 1] = height
smpl_85 = rotations_matrix_to_smpl85(rotations_matrix, root_translation)
return smpl_85
def recover_joint_positions_272(data: np.ndarray, joints_num) -> np.ndarray:
return recover_from_local_position(data, joints_num)
def convert_motion_to_joints(
motion_data: np.ndarray,
dim: int,
mean: np.ndarray = None,
std: np.ndarray = None,
joints_num=22,
):
"""
Convert Kx263 dim or Kx272 dim motion data to Kx22x3 joint positions.
Args:
motion_data: numpy array of shape (K, 263) or (K, 272) where K is number of frames
Returns:
joints: numpy array of shape (K, 22, 3) representing joint positions
"""
if mean is not None and std is not None:
motion_data = motion_data * std + mean
if dim == 263:
recovered_positions = recover_joint_positions_263(motion_data, joints_num)
elif dim == 272:
recovered_positions = recover_joint_positions_272(motion_data, joints_num)
else:
raise ValueError(f"Unsupported motion data dimension: {dim}")
return recovered_positions
|