Labira/LabiraPJOK_6_100_Group
This model is a fine-tuned version of Labira/LabiraPJOK_5_100_Group on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0384
- Validation Loss: 0.0017
- Epoch: 99
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 400, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
| Train Loss | Validation Loss | Epoch |
|---|---|---|
| 3.2140 | 2.5795 | 0 |
| 1.5796 | 1.6377 | 1 |
| 1.2599 | 1.1880 | 2 |
| 1.0232 | 0.9323 | 3 |
| 0.7286 | 0.7767 | 4 |
| 0.6644 | 0.6911 | 5 |
| 0.5911 | 0.6071 | 6 |
| 0.4856 | 0.5126 | 7 |
| 0.4193 | 0.4042 | 8 |
| 0.3771 | 0.3472 | 9 |
| 0.2351 | 0.3399 | 10 |
| 0.3774 | 0.2887 | 11 |
| 0.3694 | 0.2545 | 12 |
| 0.2110 | 0.2572 | 13 |
| 0.2303 | 0.2229 | 14 |
| 0.1635 | 0.1686 | 15 |
| 0.1560 | 0.1591 | 16 |
| 0.2134 | 0.1437 | 17 |
| 0.1097 | 0.1447 | 18 |
| 0.1041 | 0.1354 | 19 |
| 0.1667 | 0.1058 | 20 |
| 0.0982 | 0.0677 | 21 |
| 0.0717 | 0.0470 | 22 |
| 0.0966 | 0.0506 | 23 |
| 0.1553 | 0.0578 | 24 |
| 0.1038 | 0.0798 | 25 |
| 0.1154 | 0.0802 | 26 |
| 0.0830 | 0.0559 | 27 |
| 0.0554 | 0.0403 | 28 |
| 0.0856 | 0.0337 | 29 |
| 0.0638 | 0.0296 | 30 |
| 0.0671 | 0.0228 | 31 |
| 0.0666 | 0.0162 | 32 |
| 0.0787 | 0.0114 | 33 |
| 0.0704 | 0.0115 | 34 |
| 0.0476 | 0.0117 | 35 |
| 0.0451 | 0.0099 | 36 |
| 0.0600 | 0.0077 | 37 |
| 0.0932 | 0.0056 | 38 |
| 0.0483 | 0.0045 | 39 |
| 0.0841 | 0.0052 | 40 |
| 0.0584 | 0.0062 | 41 |
| 0.0403 | 0.0080 | 42 |
| 0.1138 | 0.0052 | 43 |
| 0.0494 | 0.0043 | 44 |
| 0.0592 | 0.0040 | 45 |
| 0.0639 | 0.0036 | 46 |
| 0.0481 | 0.0036 | 47 |
| 0.0485 | 0.0041 | 48 |
| 0.0590 | 0.0044 | 49 |
| 0.0271 | 0.0040 | 50 |
| 0.0426 | 0.0036 | 51 |
| 0.0463 | 0.0035 | 52 |
| 0.0468 | 0.0035 | 53 |
| 0.1085 | 0.0035 | 54 |
| 0.0487 | 0.0035 | 55 |
| 0.0271 | 0.0035 | 56 |
| 0.0278 | 0.0034 | 57 |
| 0.0291 | 0.0031 | 58 |
| 0.0496 | 0.0028 | 59 |
| 0.0642 | 0.0030 | 60 |
| 0.0467 | 0.0029 | 61 |
| 0.0449 | 0.0030 | 62 |
| 0.0509 | 0.0030 | 63 |
| 0.0622 | 0.0028 | 64 |
| 0.0709 | 0.0037 | 65 |
| 0.0566 | 0.0047 | 66 |
| 0.0701 | 0.0048 | 67 |
| 0.0510 | 0.0040 | 68 |
| 0.0404 | 0.0032 | 69 |
| 0.0189 | 0.0027 | 70 |
| 0.0369 | 0.0025 | 71 |
| 0.0595 | 0.0021 | 72 |
| 0.0736 | 0.0022 | 73 |
| 0.0554 | 0.0025 | 74 |
| 0.0432 | 0.0026 | 75 |
| 0.0180 | 0.0027 | 76 |
| 0.0415 | 0.0027 | 77 |
| 0.0391 | 0.0026 | 78 |
| 0.0276 | 0.0026 | 79 |
| 0.0426 | 0.0025 | 80 |
| 0.0757 | 0.0025 | 81 |
| 0.0331 | 0.0024 | 82 |
| 0.0595 | 0.0025 | 83 |
| 0.0371 | 0.0023 | 84 |
| 0.0419 | 0.0022 | 85 |
| 0.0509 | 0.0022 | 86 |
| 0.0459 | 0.0021 | 87 |
| 0.0574 | 0.0020 | 88 |
| 0.0233 | 0.0022 | 89 |
| 0.0195 | 0.0020 | 90 |
| 0.0515 | 0.0019 | 91 |
| 0.0348 | 0.0019 | 92 |
| 0.0790 | 0.0018 | 93 |
| 0.0533 | 0.0018 | 94 |
| 0.0408 | 0.0018 | 95 |
| 0.0609 | 0.0017 | 96 |
| 0.0442 | 0.0017 | 97 |
| 0.0427 | 0.0017 | 98 |
| 0.0384 | 0.0017 | 99 |
Framework versions
- Transformers 4.45.2
- TensorFlow 2.17.0
- Datasets 2.20.0
- Tokenizers 0.20.1
- Downloads last month
- -
Model tree for Labira/LabiraPJOK_6_100_Group
Base model
indolem/indobert-base-uncased
Finetuned
Labira/LabiraPJOK_4_100_Group
Finetuned
Labira/LabiraPJOK_5_100_Group