Labira/LabiraPJOK_4_100_Group
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0923
- Validation Loss: 0.0207
- Epoch: 99
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 300, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
| Train Loss | Validation Loss | Epoch |
|---|---|---|
| 6.0143 | 5.4097 | 0 |
| 5.4107 | 4.8137 | 1 |
| 5.1199 | 4.2679 | 2 |
| 4.4588 | 3.8174 | 3 |
| 4.0979 | 4.1675 | 4 |
| 3.7043 | 3.8359 | 5 |
| 4.2631 | 3.4466 | 6 |
| 3.3397 | 2.9869 | 7 |
| 3.3407 | 2.4810 | 8 |
| 2.7209 | 1.9936 | 9 |
| 2.2011 | 1.6508 | 10 |
| 1.8231 | 1.4160 | 11 |
| 1.7967 | 1.2276 | 12 |
| 1.4320 | 0.9688 | 13 |
| 1.4783 | 0.7902 | 14 |
| 1.6968 | 0.7241 | 15 |
| 0.9957 | 0.6687 | 16 |
| 1.1000 | 0.6334 | 17 |
| 0.7929 | 0.5741 | 18 |
| 0.7711 | 0.5164 | 19 |
| 1.1769 | 0.4778 | 20 |
| 0.7386 | 0.4681 | 21 |
| 0.4486 | 0.4709 | 22 |
| 0.6128 | 0.4349 | 23 |
| 0.3976 | 0.3977 | 24 |
| 0.4388 | 0.3597 | 25 |
| 0.4466 | 0.3300 | 26 |
| 0.9996 | 0.3130 | 27 |
| 0.3339 | 0.3061 | 28 |
| 0.4258 | 0.3022 | 29 |
| 0.2798 | 0.3007 | 30 |
| 0.2566 | 0.3003 | 31 |
| 0.2680 | 0.2996 | 32 |
| 0.3876 | 0.2983 | 33 |
| 0.2534 | 0.2970 | 34 |
| 0.3045 | 0.2967 | 35 |
| 0.3094 | 0.2963 | 36 |
| 0.2417 | 0.2950 | 37 |
| 0.3368 | 0.2934 | 38 |
| 0.2831 | 0.2919 | 39 |
| 0.1785 | 0.2909 | 40 |
| 0.2789 | 0.2899 | 41 |
| 0.3243 | 0.2896 | 42 |
| 0.3355 | 0.2892 | 43 |
| 0.2775 | 0.2893 | 44 |
| 0.3313 | 0.2890 | 45 |
| 0.3249 | 0.2887 | 46 |
| 0.2887 | 0.2890 | 47 |
| 0.1869 | 0.2902 | 48 |
| 0.3599 | 0.2910 | 49 |
| 0.3157 | 0.2905 | 50 |
| 0.2670 | 0.2885 | 51 |
| 0.3326 | 0.2868 | 52 |
| 0.1986 | 0.1883 | 53 |
| 0.4806 | 0.1881 | 54 |
| 0.3620 | 0.2858 | 55 |
| 0.1411 | 0.2882 | 56 |
| 0.1301 | 0.2905 | 57 |
| 0.3283 | 0.2426 | 58 |
| 0.2434 | 0.2314 | 59 |
| 0.2115 | 0.2232 | 60 |
| 0.1430 | 0.2136 | 61 |
| 0.2704 | 0.2055 | 62 |
| 0.2001 | 0.1985 | 63 |
| 0.1271 | 0.1936 | 64 |
| 0.1162 | 0.1913 | 65 |
| 0.0990 | 0.1893 | 66 |
| 0.1776 | 0.1880 | 67 |
| 0.1269 | 0.1870 | 68 |
| 0.2546 | 0.1867 | 69 |
| 0.1521 | 0.1863 | 70 |
| 0.0998 | 0.1860 | 71 |
| 0.0989 | 0.1856 | 72 |
| 0.1166 | 0.1853 | 73 |
| 0.1331 | 0.1850 | 74 |
| 0.1571 | 0.1846 | 75 |
| 0.1997 | 0.1858 | 76 |
| 0.1514 | 0.1866 | 77 |
| 0.1626 | 0.0152 | 78 |
| 0.2198 | 0.0153 | 79 |
| 0.2598 | 0.0165 | 80 |
| 0.2675 | 0.0177 | 81 |
| 0.1063 | 0.0185 | 82 |
| 0.1424 | 0.0193 | 83 |
| 0.1639 | 0.0197 | 84 |
| 0.1225 | 0.0201 | 85 |
| 0.1899 | 0.0203 | 86 |
| 0.1857 | 0.0209 | 87 |
| 0.0887 | 0.0214 | 88 |
| 0.0980 | 0.0218 | 89 |
| 0.1236 | 0.0223 | 90 |
| 0.0868 | 0.0224 | 91 |
| 0.0661 | 0.0222 | 92 |
| 0.0701 | 0.0216 | 93 |
| 0.0699 | 0.0212 | 94 |
| 0.1249 | 0.0209 | 95 |
| 0.1155 | 0.0208 | 96 |
| 0.0651 | 0.0208 | 97 |
| 0.0646 | 0.0207 | 98 |
| 0.0923 | 0.0207 | 99 |
Framework versions
- Transformers 4.45.2
- TensorFlow 2.17.0
- Datasets 2.20.0
- Tokenizers 0.20.1
- Downloads last month
- -