Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from allenai/specter2_base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Kawasaki disease immunoprophylaxis',
'[Effect of immunoglobulin in the prevention of coronary artery aneurysms in Kawasaki disease]. ',
'Management of Kawasaki disease. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
anchor, positive, and negative| anchor | positive | negative | |
|---|---|---|---|
| type | string | string | string |
| details |
|
|
|
| anchor | positive | negative |
|---|---|---|
Telehealth challenges |
[Technological transformations and evolution of the medical practice: current status, issues and perspectives for the development of telemedicine]. |
The untapped potential of Telehealth. |
Racial disparities in mental health treatment |
Relationships between stigma, depression, and treatment in white and African American primary care patients. |
Mental Health Care Disparities Now and in the Future. |
Iatrogenic hyperkalemia in elderly patients with cardiovascular disease |
Iatrogenic hyperkalemia as a serious problem in therapy of cardiovascular diseases in elderly patients. |
The cardiovascular implications of hypokalemia. |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
per_device_train_batch_size: 32per_device_eval_batch_size: 32learning_rate: 2e-05num_train_epochs: 1lr_scheduler_type: cosine_with_restartswarmup_ratio: 0.1bf16: Truebatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: cosine_with_restartslr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss |
|---|---|---|
| 0.0110 | 1 | 2.9861 |
| 0.0220 | 2 | 2.9379 |
| 0.0330 | 3 | 3.0613 |
| 0.0440 | 4 | 2.8081 |
| 0.0549 | 5 | 2.6516 |
| 0.0659 | 6 | 2.3688 |
| 0.0769 | 7 | 2.0502 |
| 0.0879 | 8 | 1.7557 |
| 0.0989 | 9 | 1.5316 |
| 0.1099 | 10 | 1.2476 |
| 0.1209 | 11 | 1.1529 |
| 0.1319 | 12 | 0.9483 |
| 0.1429 | 13 | 0.7187 |
| 0.1538 | 14 | 0.6824 |
| 0.1648 | 15 | 0.593 |
| 0.1758 | 16 | 0.4593 |
| 0.1868 | 17 | 0.3737 |
| 0.1978 | 18 | 0.5082 |
| 0.2088 | 19 | 0.4232 |
| 0.2198 | 20 | 0.3089 |
| 0.2308 | 21 | 0.2057 |
| 0.2418 | 22 | 0.2358 |
| 0.2527 | 23 | 0.2291 |
| 0.2637 | 24 | 0.2707 |
| 0.2747 | 25 | 0.1359 |
| 0.2857 | 26 | 0.2294 |
| 0.2967 | 27 | 0.157 |
| 0.3077 | 28 | 0.0678 |
| 0.3187 | 29 | 0.1022 |
| 0.3297 | 30 | 0.0713 |
| 0.3407 | 31 | 0.0899 |
| 0.3516 | 32 | 0.1385 |
| 0.3626 | 33 | 0.0809 |
| 0.3736 | 34 | 0.1053 |
| 0.3846 | 35 | 0.0925 |
| 0.3956 | 36 | 0.0675 |
| 0.4066 | 37 | 0.0841 |
| 0.4176 | 38 | 0.0366 |
| 0.4286 | 39 | 0.0768 |
| 0.4396 | 40 | 0.0529 |
| 0.4505 | 41 | 0.0516 |
| 0.4615 | 42 | 0.0342 |
| 0.4725 | 43 | 0.0456 |
| 0.4835 | 44 | 0.0344 |
| 0.4945 | 45 | 0.1337 |
| 0.5055 | 46 | 0.0883 |
| 0.5165 | 47 | 0.0691 |
| 0.5275 | 48 | 0.0322 |
| 0.5385 | 49 | 0.0731 |
| 0.5495 | 50 | 0.0376 |
| 0.5604 | 51 | 0.0464 |
| 0.5714 | 52 | 0.0173 |
| 0.5824 | 53 | 0.0516 |
| 0.5934 | 54 | 0.0703 |
| 0.6044 | 55 | 0.0273 |
| 0.6154 | 56 | 0.0374 |
| 0.6264 | 57 | 0.0292 |
| 0.6374 | 58 | 0.1195 |
| 0.6484 | 59 | 0.0852 |
| 0.6593 | 60 | 0.0697 |
| 0.6703 | 61 | 0.0653 |
| 0.6813 | 62 | 0.0426 |
| 0.6923 | 63 | 0.0288 |
| 0.7033 | 64 | 0.0344 |
| 0.7143 | 65 | 0.104 |
| 0.7253 | 66 | 0.0251 |
| 0.7363 | 67 | 0.0095 |
| 0.7473 | 68 | 0.0208 |
| 0.7582 | 69 | 0.0814 |
| 0.7692 | 70 | 0.0813 |
| 0.7802 | 71 | 0.0508 |
| 0.7912 | 72 | 0.032 |
| 0.8022 | 73 | 0.0879 |
| 0.8132 | 74 | 0.095 |
| 0.8242 | 75 | 0.0932 |
| 0.8352 | 76 | 0.0868 |
| 0.8462 | 77 | 0.0231 |
| 0.8571 | 78 | 0.0144 |
| 0.8681 | 79 | 0.0179 |
| 0.8791 | 80 | 0.0457 |
| 0.8901 | 81 | 0.0935 |
| 0.9011 | 82 | 0.0658 |
| 0.9121 | 83 | 0.0553 |
| 0.9231 | 84 | 0.003 |
| 0.9341 | 85 | 0.0036 |
| 0.9451 | 86 | 0.0034 |
| 0.9560 | 87 | 0.0032 |
| 0.9670 | 88 | 0.0026 |
| 0.9780 | 89 | 0.0042 |
| 0.9890 | 90 | 0.0024 |
| 1.0 | 91 | 0.0022 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
allenai/specter2_base