morriszms's picture
Update README.md
905c128 verified
metadata
tags:
  - generated_from_trainer
  - code
  - coding
  - llama-2
  - TensorBlock
  - GGUF
license: apache-2.0
language:
  - code
datasets:
  - iamtarun/python_code_instructions_18k_alpaca
pipeline_tag: text-generation
base_model: edumunozsala/llama-2-7b-int4-python-code-20k
model-index:
  - name: Llama-2-7b-4bit-python-coder
    results: []
TensorBlock

Website Twitter Discord GitHub Telegram

edumunozsala/llama-2-7b-int4-python-code-20k - GGUF

This repo contains GGUF format model files for edumunozsala/llama-2-7b-int4-python-code-20k.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b5165.

Our projects

Forge
Forge Project
An OpenAI-compatible multi-provider routing layer.
πŸš€ Try it now! πŸš€
Awesome MCP Servers TensorBlock Studio
MCP Servers Studio
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
πŸ‘€ See what we built πŸ‘€ πŸ‘€ See what we built πŸ‘€

Prompt template

Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format.

Model file specification

Filename Quant type File Size Description
llama-2-7b-int4-python-code-20k-Q2_K.gguf Q2_K 2.533 GB smallest, significant quality loss - not recommended for most purposes
llama-2-7b-int4-python-code-20k-Q3_K_S.gguf Q3_K_S 2.948 GB very small, high quality loss
llama-2-7b-int4-python-code-20k-Q3_K_M.gguf Q3_K_M 3.298 GB very small, high quality loss
llama-2-7b-int4-python-code-20k-Q3_K_L.gguf Q3_K_L 3.597 GB small, substantial quality loss
llama-2-7b-int4-python-code-20k-Q4_0.gguf Q4_0 3.826 GB legacy; small, very high quality loss - prefer using Q3_K_M
llama-2-7b-int4-python-code-20k-Q4_K_S.gguf Q4_K_S 3.857 GB small, greater quality loss
llama-2-7b-int4-python-code-20k-Q4_K_M.gguf Q4_K_M 4.081 GB medium, balanced quality - recommended
llama-2-7b-int4-python-code-20k-Q5_0.gguf Q5_0 4.652 GB legacy; medium, balanced quality - prefer using Q4_K_M
llama-2-7b-int4-python-code-20k-Q5_K_S.gguf Q5_K_S 4.652 GB large, low quality loss - recommended
llama-2-7b-int4-python-code-20k-Q5_K_M.gguf Q5_K_M 4.783 GB large, very low quality loss - recommended
llama-2-7b-int4-python-code-20k-Q6_K.gguf Q6_K 5.529 GB very large, extremely low quality loss
llama-2-7b-int4-python-code-20k-Q8_0.gguf Q8_0 7.161 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/edumunozsala_llama-2-7b-int4-python-code-20k-GGUF --include "llama-2-7b-int4-python-code-20k-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/edumunozsala_llama-2-7b-int4-python-code-20k-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'