|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch Gemma2MoE model.""" |
|
|
|
|
|
import math |
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
import torch.utils.checkpoint |
|
|
from torch import nn |
|
|
from torch.nn import CrossEntropyLoss |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache, StaticCache |
|
|
from transformers.modeling_outputs import MoeModelOutputWithPast, MoeCausalLMOutputWithPast |
|
|
from transformers.modeling_utils import PreTrainedModel |
|
|
from transformers.generation import GenerationMixin |
|
|
from transformers.utils import ( |
|
|
add_start_docstrings, |
|
|
add_start_docstrings_to_model_forward, |
|
|
logging, |
|
|
replace_return_docstrings, |
|
|
) |
|
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask |
|
|
|
|
|
from .configuration_gemma2moe import Gemma2MoeConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CONFIG_FOR_DOC = "Gemma2MoeConfig" |
|
|
|
|
|
|
|
|
|
|
|
def load_balancing_loss_func(gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2) -> float: |
|
|
r""" |
|
|
Computes auxiliary load balancing loss as in Switch Transformer. |
|
|
""" |
|
|
if gate_logits is None or not isinstance(gate_logits, torch.Tensor): |
|
|
return 0.0 |
|
|
|
|
|
|
|
|
if gate_logits.dim() == 3: |
|
|
gate_logits = gate_logits.view(-1, gate_logits.shape[-1]) |
|
|
|
|
|
routing_weights = torch.softmax(gate_logits, dim=-1) |
|
|
|
|
|
|
|
|
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1) |
|
|
|
|
|
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) |
|
|
if expert_mask.dim() == 3: |
|
|
expert_mask = expert_mask.sum(dim=1) |
|
|
|
|
|
|
|
|
tokens_per_expert = torch.mean(expert_mask.float(), dim=0) |
|
|
|
|
|
|
|
|
router_prob_per_expert = torch.mean(routing_weights, dim=0) |
|
|
|
|
|
|
|
|
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert) * num_experts |
|
|
return overall_loss |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Gemma2RMSNorm(nn.Module): |
|
|
def __init__(self, dim: int, eps: float = 1e-6): |
|
|
super().__init__() |
|
|
self.eps = eps |
|
|
self.weight = nn.Parameter(torch.zeros(dim)) |
|
|
|
|
|
def _norm(self, x): |
|
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
|
|
def forward(self, x): |
|
|
output = self._norm(x.float()) |
|
|
|
|
|
|
|
|
output = output * (1.0 + self.weight.float()) |
|
|
return output.type_as(x) |
|
|
|
|
|
|
|
|
class Gemma2RotaryEmbedding(nn.Module): |
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.base = base |
|
|
self.register_buffer("inv_freq", None, persistent=False) |
|
|
|
|
|
@torch.no_grad() |
|
|
def forward(self, x, position_ids, seq_len=None): |
|
|
|
|
|
if self.inv_freq is None: |
|
|
self.inv_freq = 1.0 / ( |
|
|
self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim) |
|
|
) |
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
|
|
|
with torch.autocast(device_type=x.device.type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() |
|
|
sin = emb.sin() |
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors.""" |
|
|
cos = cos.unsqueeze(1) |
|
|
sin = sin.unsqueeze(1) |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). |
|
|
Used for Grouped Query Attention (GQA). |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
class Gemma2Attention(nn.Module): |
|
|
""" |
|
|
Multi-headed attention with Soft-capping, Sliding Window and GQA. |
|
|
""" |
|
|
def __init__(self, config: Gemma2MoeConfig, layer_idx: Optional[int] = None): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
|
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.hidden_size = config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
self.head_dim = config.head_dim |
|
|
self.num_key_value_heads = config.num_key_value_heads |
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
|
self.max_position_embeddings = config.max_position_embeddings |
|
|
self.rope_theta = config.rope_theta |
|
|
self.is_causal = True |
|
|
|
|
|
|
|
|
self.scaling = config.query_pre_attn_scalar ** -0.5 |
|
|
|
|
|
|
|
|
self.attn_logit_soft_capping = config.attn_logit_soft_capping |
|
|
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) |
|
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) |
|
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) |
|
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias) |
|
|
|
|
|
self.rotary_emb = Gemma2RotaryEmbedding( |
|
|
self.head_dim, |
|
|
max_position_embeddings=self.max_position_embeddings, |
|
|
base=self.rope_theta, |
|
|
) |
|
|
self.sliding_window = config.sliding_window |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
key_states = self.k_proj(hidden_states) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
|
|
cos, sin = self.rotary_emb(value_states, position_ids=position_ids, seq_len=None) |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position, "sliding_window": self.sliding_window} |
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
|
|
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling |
|
|
|
|
|
|
|
|
if self.attn_logit_soft_capping is not None: |
|
|
attn_weights = attn_weights / self.attn_logit_soft_capping |
|
|
attn_weights = torch.tanh(attn_weights) |
|
|
attn_weights = attn_weights * self.attn_logit_soft_capping |
|
|
|
|
|
if attention_mask is not None: |
|
|
|
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
|
|
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
|
raise ValueError( |
|
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
|
f" {attn_output.size()}" |
|
|
) |
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
attn_output = attn_output.view(bsz, q_len, -1) |
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
|
|
if not output_attentions: |
|
|
attn_weights = None |
|
|
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Gemma2MLP(nn.Module): |
|
|
""" |
|
|
Gemma 2 MLP: Gated GELU Tanh |
|
|
""" |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
|
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, x): |
|
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
|
|
|
class Gemma2MoeBlock(nn.Module): |
|
|
""" |
|
|
Sparse MoE Block for Gemma 2. |
|
|
Uses Top-k gating and processes selected tokens through experts. |
|
|
""" |
|
|
def __init__(self, config: Gemma2MoeConfig): |
|
|
super().__init__() |
|
|
self.hidden_dim = config.hidden_size |
|
|
self.num_experts = config.num_local_experts |
|
|
self.top_k = config.num_experts_per_tok |
|
|
self.jitter_noise = config.router_jitter_noise |
|
|
|
|
|
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False) |
|
|
self.experts = nn.ModuleList([Gemma2MLP(config) for _ in range(self.num_experts)]) |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
batch_size, sequence_length, hidden_dim = hidden_states.shape |
|
|
hidden_states_flat = hidden_states.view(-1, hidden_dim) |
|
|
|
|
|
|
|
|
router_logits = self.gate(hidden_states_flat) |
|
|
|
|
|
if self.training and self.jitter_noise > 0: |
|
|
router_logits += torch.empty_like(router_logits).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise) |
|
|
|
|
|
routing_weights = F.softmax(router_logits, dim=1) |
|
|
topk_weight, topk_idx = torch.topk(routing_weights, self.top_k, dim=-1, sorted=False) |
|
|
|
|
|
|
|
|
topk_weight /= topk_weight.sum(dim=-1, keepdim=True) |
|
|
topk_weight = topk_weight.to(hidden_states.dtype) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
final_hidden_states = torch.zeros_like(hidden_states_flat) |
|
|
|
|
|
|
|
|
flat_topk_idx = topk_idx.view(-1) |
|
|
|
|
|
|
|
|
for i, expert in enumerate(self.experts): |
|
|
|
|
|
|
|
|
|
|
|
expert_mask = (topk_idx == i) |
|
|
|
|
|
if expert_mask.any(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
batch_indices, k_indices = torch.where(expert_mask) |
|
|
|
|
|
|
|
|
inp = hidden_states_flat[batch_indices] |
|
|
|
|
|
|
|
|
out = expert(inp) |
|
|
|
|
|
|
|
|
weights = topk_weight[batch_indices, k_indices] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
weighted_out = out * weights.unsqueeze(-1) |
|
|
final_hidden_states.index_add_(0, batch_indices, weighted_out) |
|
|
|
|
|
final_hidden_states = final_hidden_states.view(batch_size, sequence_length, hidden_dim) |
|
|
return final_hidden_states, router_logits |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Gemma2MoeDecoderLayer(nn.Module): |
|
|
def __init__(self, config: Gemma2MoeConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
self.self_attn = Gemma2Attention(config, layer_idx) |
|
|
self.block_sparse_moe = Gemma2MoeBlock(config) |
|
|
|
|
|
|
|
|
self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
|
output_attentions: Optional[bool] = False, |
|
|
output_router_logits: Optional[bool] = False, |
|
|
use_cache: Optional[bool] = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
) |
|
|
|
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.pre_feedforward_layernorm(hidden_states) |
|
|
|
|
|
|
|
|
hidden_states, router_logits = self.block_sparse_moe(hidden_states) |
|
|
|
|
|
hidden_states = self.post_feedforward_layernorm(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
|
|
|
if output_attentions: |
|
|
outputs += (self_attn_weights,) |
|
|
|
|
|
if use_cache: |
|
|
outputs += (present_key_value,) |
|
|
|
|
|
if output_router_logits: |
|
|
outputs += (router_logits,) |
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Gemma2MoePreTrainedModel(PreTrainedModel): |
|
|
config_class = Gemma2MoeConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["Gemma2MoeDecoderLayer"] |
|
|
_skip_keys_device_placement = ["past_key_values"] |
|
|
_supports_flash_attn_2 = False |
|
|
_supports_sdpa = True |
|
|
_supports_cache_class = True |
|
|
|
|
|
def _init_weights(self, module): |
|
|
std = self.config.initializer_range |
|
|
if isinstance(module, nn.Linear): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.padding_idx is not None: |
|
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
|
|
|
class Gemma2MoeModel(Gemma2MoePreTrainedModel): |
|
|
def __init__(self, config: Gemma2MoeConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.layers = nn.ModuleList( |
|
|
[Gemma2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
|
) |
|
|
self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.embed_tokens = value |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
output_router_logits: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
) -> Union[Tuple, MoeModelOutputWithPast]: |
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_router_logits = output_router_logits if output_router_logits is not None else self.config.output_router_logits |
|
|
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
|
past_key_values = DynamicCache() |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
|
) |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
|
|
|
causal_mask = _prepare_4d_causal_attention_mask( |
|
|
attention_mask, |
|
|
(inputs_embeds.shape[0], inputs_embeds.shape[1]), |
|
|
inputs_embeds, |
|
|
past_key_values.get_seq_length() if past_key_values is not None else 0, |
|
|
sliding_window=self.config.sliding_window, |
|
|
) |
|
|
|
|
|
|
|
|
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=inputs_embeds.dtype) |
|
|
hidden_states = inputs_embeds * normalizer |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_router_logits = () if output_router_logits else None |
|
|
|
|
|
for decoder_layer in self.layers: |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
layer_outputs = self._gradient_checkpointing_func( |
|
|
decoder_layer.__call__, |
|
|
hidden_states, |
|
|
causal_mask, |
|
|
position_ids, |
|
|
past_key_values, |
|
|
output_attentions, |
|
|
output_router_logits, |
|
|
use_cache, |
|
|
cache_position, |
|
|
) |
|
|
else: |
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=causal_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_values, |
|
|
output_attentions=output_attentions, |
|
|
output_router_logits=output_router_logits, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if output_router_logits: |
|
|
all_router_logits += (layer_outputs[-1],) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if not return_dict: |
|
|
return tuple(v for v in [hidden_states, past_key_values, all_hidden_states, all_router_logits] if v is not None) |
|
|
|
|
|
return MoeModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values, |
|
|
hidden_states=all_hidden_states, |
|
|
router_logits=all_router_logits, |
|
|
) |
|
|
|
|
|
|
|
|
class Gemma2MoeForCausalLM(Gemma2MoePreTrainedModel, GenerationMixin): |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.model = Gemma2MoeModel(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
self.router_aux_loss_coef = config.router_aux_loss_coef |
|
|
self.num_experts = config.num_local_experts |
|
|
self.num_experts_per_tok = config.num_experts_per_tok |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.model.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.model.embed_tokens = value |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
output_router_logits: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
) -> Union[Tuple, MoeCausalLMOutputWithPast]: |
|
|
|
|
|
output_router_logits = output_router_logits if output_router_logits is not None else self.config.output_router_logits |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
output_router_logits=output_router_logits, |
|
|
return_dict=return_dict, |
|
|
cache_position=cache_position, |
|
|
) |
|
|
|
|
|
hidden_states = outputs[0] |
|
|
logits = self.lm_head(hidden_states) |
|
|
|
|
|
|
|
|
|
|
|
if self.config.logit_soft_capping is not None: |
|
|
logits = logits / self.config.logit_soft_capping |
|
|
logits = torch.tanh(logits) |
|
|
logits = logits * self.config.logit_soft_capping |
|
|
|
|
|
logits = logits.float() |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
|
shift_labels = labels[..., 1:].contiguous() |
|
|
loss_fct = CrossEntropyLoss() |
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
|
shift_labels = shift_labels.view(-1) |
|
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
|
|
aux_loss = None |
|
|
if output_router_logits: |
|
|
aux_loss = load_balancing_loss_func( |
|
|
outputs.router_logits if return_dict else outputs[-1], |
|
|
self.num_experts, |
|
|
self.num_experts_per_tok, |
|
|
) |
|
|
if labels is not None: |
|
|
loss += self.router_aux_loss_coef * aux_loss |
|
|
|
|
|
if not return_dict: |
|
|
output = (logits,) + outputs[1:] |
|
|
if output_router_logits: |
|
|
output = (aux_loss,) + output |
|
|
return (loss,) + output if loss is not None else output |
|
|
|
|
|
return MoeCausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
aux_loss=aux_loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
router_logits=outputs.router_logits, |
|
|
) |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs |
|
|
): |
|
|
past_length = 0 |
|
|
if past_key_values is not None: |
|
|
if isinstance(past_key_values, Cache): |
|
|
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() |
|
|
|
|
|
|
|
|
|
|
|
if hasattr(past_key_values, "get_max_length") and past_key_values.get_max_length() is not None: |
|
|
max_cache_length = torch.tensor(past_key_values.get_max_length(), device=input_ids.device) |
|
|
else: |
|
|
max_cache_length = None |
|
|
|
|
|
|
|
|
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length) |
|
|
|
|
|
|
|
|
else: |
|
|
past_length = past_key_values[0][0].shape[2] |
|
|
max_cache_length = None |
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] |
|
|
elif past_length < input_ids.shape[1]: |
|
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
|
|
|
if ( |
|
|
max_cache_length is not None |
|
|
and attention_mask is not None |
|
|
and cache_length + input_ids.shape[1] > max_cache_length |
|
|
): |
|
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
|
if past_key_values: |
|
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
|
else: |
|
|
model_inputs = {"input_ids": input_ids} |
|
|
|
|
|
if cache_position is None: |
|
|
|
|
|
input_len = model_inputs.get("input_ids", inputs_embeds).shape[1] |
|
|
cache_position = torch.arange(past_length, past_length + input_len, device=input_ids.device) |
|
|
|
|
|
model_inputs.update( |
|
|
{ |
|
|
"position_ids": position_ids, |
|
|
"cache_position": cache_position, |
|
|
"past_key_values": past_key_values, |
|
|
"use_cache": kwargs.get("use_cache"), |
|
|
"attention_mask": attention_mask, |
|
|
} |
|
|
) |
|
|
return model_inputs |
|
|
|
|
|
@staticmethod |
|
|
def _reorder_cache(past_key_values, beam_idx): |
|
|
reordered_past = () |
|
|
for layer_past in past_key_values: |
|
|
reordered_past += ( |
|
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
|
) |
|
|
return reordered_past |