File size: 31,325 Bytes
fd5ef13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team and Gemma2MoE Contributors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Gemma2MoE model."""

import math
from typing import List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_outputs import MoeModelOutputWithPast, MoeCausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.generation import GenerationMixin
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask

from .configuration_gemma2moe import Gemma2MoeConfig

logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "Gemma2MoeConfig"

# --- Auxiliary Loss & Router Functions ---

def load_balancing_loss_func(gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2) -> float:
    r"""
    Computes auxiliary load balancing loss as in Switch Transformer.
    """
    if gate_logits is None or not isinstance(gate_logits, torch.Tensor):
        return 0.0

    # gate_logits: [batch_size * seq_len, num_experts] assumed flattened or [batch, seq, experts]
    if gate_logits.dim() == 3:
        gate_logits = gate_logits.view(-1, gate_logits.shape[-1])

    routing_weights = torch.softmax(gate_logits, dim=-1)
    
    # top_k indices
    _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)

    # expert_mask: [num_tokens, num_experts]
    expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
    if expert_mask.dim() == 3:
        expert_mask = expert_mask.sum(dim=1) # Sum over k selected experts
    
    # Normalize to get fraction of tokens per expert
    tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
    
    # Mean probability per expert
    router_prob_per_expert = torch.mean(routing_weights, dim=0)

    # Loss = N * sum(f_i * P_i)
    overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert) * num_experts
    return overall_loss


# --- Gemma 2 Components ---

class Gemma2RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.zeros(dim))

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float())
        # Gemma 2 signature: output * (1 + weight)
        # Casting back to input dtype
        output = output * (1.0 + self.weight.float())
        return output.type_as(x)


class Gemma2RotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()
        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        self.register_buffer("inv_freq", None, persistent=False)

    @torch.no_grad()
    def forward(self, x, position_ids, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        if self.inv_freq is None:
            self.inv_freq = 1.0 / (
                self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
            )
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
        position_ids_expanded = position_ids[:, None, :].float()
        
        # Use float32 for RoPE calculation to maintain precision
        with torch.autocast(device_type=x.device.type, enabled=False):
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos()
            sin = emb.sin()
        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin):
    """Applies Rotary Position Embedding to the query and key tensors."""
    cos = cos.unsqueeze(1) # [bs, 1, seq_len, head_dim]
    sin = sin.unsqueeze(1)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
    Used for Grouped Query Attention (GQA).
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


class Gemma2Attention(nn.Module):
    """
    Multi-headed attention with Soft-capping, Sliding Window and GQA.
    """
    def __init__(self, config: Gemma2MoeConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        
        self.attention_dropout = config.attention_dropout
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = config.head_dim
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta
        self.is_causal = True
        
        # Gemma 2 scaling specific
        self.scaling = config.query_pre_attn_scalar ** -0.5
        
        # Soft capping parameter
        self.attn_logit_soft_capping = config.attn_logit_soft_capping

        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
        
        self.rotary_emb = Gemma2RotaryEmbedding(
            self.head_dim,
            max_position_embeddings=self.max_position_embeddings,
            base=self.rope_theta,
        )
        self.sliding_window = config.sliding_window

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        cos, sin = self.rotary_emb(value_states, position_ids=position_ids, seq_len=None)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
             # cache_position for static cache, legacy for dynamic
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position, "sliding_window": self.sliding_window}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        # Scaled Dot Product Calculation
        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling

        # Logit Soft Capping
        if self.attn_logit_soft_capping is not None:
            attn_weights = attn_weights / self.attn_logit_soft_capping
            attn_weights = torch.tanh(attn_weights)
            attn_weights = attn_weights * self.attn_logit_soft_capping

        if attention_mask is not None:
            # Mask should be broadcastable
            attn_weights = attn_weights + attention_mask

        # Softmax and Dropout
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
        
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.view(bsz, q_len, -1)
        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


# --- Expert & MoE Block ---

class Gemma2MLP(nn.Module):
    """
    Gemma 2 MLP: Gated GELU Tanh
    """
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))


class Gemma2MoeBlock(nn.Module):
    """
    Sparse MoE Block for Gemma 2.
    Uses Top-k gating and processes selected tokens through experts.
    """
    def __init__(self, config: Gemma2MoeConfig):
        super().__init__()
        self.hidden_dim = config.hidden_size
        self.num_experts = config.num_local_experts
        self.top_k = config.num_experts_per_tok
        self.jitter_noise = config.router_jitter_noise

        self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
        self.experts = nn.ModuleList([Gemma2MLP(config) for _ in range(self.num_experts)])

    def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        batch_size, sequence_length, hidden_dim = hidden_states.shape
        hidden_states_flat = hidden_states.view(-1, hidden_dim)

        # Router Logits
        router_logits = self.gate(hidden_states_flat)
        
        if self.training and self.jitter_noise > 0:
            router_logits += torch.empty_like(router_logits).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)

        routing_weights = F.softmax(router_logits, dim=1)
        topk_weight, topk_idx = torch.topk(routing_weights, self.top_k, dim=-1, sorted=False)
        
        # Normalize weights
        topk_weight /= topk_weight.sum(dim=-1, keepdim=True)
        topk_weight = topk_weight.to(hidden_states.dtype)

        # Routing process
        # Using a loop here for clarity and simplicity in Python. 
        # For extreme performance, Triton or CUDA kernels should be used.
        final_hidden_states = torch.zeros_like(hidden_states_flat)
        
        # Flatten indices to handle batching easier
        flat_topk_idx = topk_idx.view(-1) 
        
        # We need to process each expert
        for i, expert in enumerate(self.experts):
            # Find tokens assigned to this expert (in any of the top-k slots)
            # This is a bit inefficient in pure PyTorch but ensures correctness without custom kernels
            # Create a mask for tokens where this expert is selected
            expert_mask = (topk_idx == i)
            
            if expert_mask.any():
                # We need to collect inputs, process, and scatter back
                # This logic handles cases where an expert is selected multiple times (unlikely in top-k but possible conceptually)
                # But typically top-k implies distinct experts.
                
                # Get indices where this expert is used
                batch_indices, k_indices = torch.where(expert_mask)
                
                # Extract inputs
                inp = hidden_states_flat[batch_indices]
                
                # Forward pass
                out = expert(inp)
                
                # Weighting: We need the weight associated with this selection
                weights = topk_weight[batch_indices, k_indices]
                
                # Accumulate result
                # Ideally, scatter_add, but here we iterate. 
                # Since batch_indices might repeat if we allowed k repetitions (we don't usually),
                # standard scatter_add_ is safer.
                
                weighted_out = out * weights.unsqueeze(-1)
                final_hidden_states.index_add_(0, batch_indices, weighted_out)

        final_hidden_states = final_hidden_states.view(batch_size, sequence_length, hidden_dim)
        return final_hidden_states, router_logits


# --- Decoder Layer (Strict Gemma 2 Topology) ---

class Gemma2MoeDecoderLayer(nn.Module):
    def __init__(self, config: Gemma2MoeConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size

        self.self_attn = Gemma2Attention(config, layer_idx)
        self.block_sparse_moe = Gemma2MoeBlock(config)
        
        # Gemma 2 uses 4 specific RMSNorms per layer
        self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        output_router_logits: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        
        # --- Attention Path ---
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
        )
        
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = residual + hidden_states # Residual Connection

        # --- MoE Path ---
        residual = hidden_states
        hidden_states = self.pre_feedforward_layernorm(hidden_states)
        
        # Using MoE instead of standard MLP
        hidden_states, router_logits = self.block_sparse_moe(hidden_states)
        
        hidden_states = self.post_feedforward_layernorm(hidden_states)
        hidden_states = residual + hidden_states # Residual Connection

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)
        
        if use_cache:
            outputs += (present_key_value,)
            
        if output_router_logits:
            outputs += (router_logits,)

        return outputs


# --- PreTrained Model Wrappers ---

class Gemma2MoePreTrainedModel(PreTrainedModel):
    config_class = Gemma2MoeConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["Gemma2MoeDecoderLayer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn_2 = False # Keeping SDPA for broad compatibility logic implemented above
    _supports_sdpa = True
    _supports_cache_class = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


class Gemma2MoeModel(Gemma2MoePreTrainedModel):
    def __init__(self, config: Gemma2MoeConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [Gemma2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.gradient_checkpointing = False
        
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_router_logits: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, MoeModelOutputWithPast]:
        
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_router_logits = output_router_logits if output_router_logits is not None else self.config.output_router_logits
        output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if use_cache and past_key_values is None:
            past_key_values = DynamicCache()

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )
            
        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        # 4D Attention Mask Creation (handles Sliding Window if config requests it)
        causal_mask = _prepare_4d_causal_attention_mask(
            attention_mask,
            (inputs_embeds.shape[0], inputs_embeds.shape[1]),
            inputs_embeds,
            past_key_values.get_seq_length() if past_key_values is not None else 0,
            sliding_window=self.config.sliding_window,
        )

        # Normalization (Gemma 2 embedding scaling)
        normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=inputs_embeds.dtype)
        hidden_states = inputs_embeds * normalizer

        all_hidden_states = () if output_hidden_states else None
        all_router_logits = () if output_router_logits else None
        
        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    causal_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    output_router_logits,
                    use_cache,
                    cache_position,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=causal_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    output_router_logits=output_router_logits,
                    use_cache=use_cache,
                    cache_position=cache_position,
                )

            hidden_states = layer_outputs[0]

            if output_router_logits:
                all_router_logits += (layer_outputs[-1],)

        hidden_states = self.norm(hidden_states)

        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, past_key_values, all_hidden_states, all_router_logits] if v is not None)

        return MoeModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values,
            hidden_states=all_hidden_states,
            router_logits=all_router_logits,
        )


class Gemma2MoeForCausalLM(Gemma2MoePreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = Gemma2MoeModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.router_aux_loss_coef = config.router_aux_loss_coef
        self.num_experts = config.num_local_experts
        self.num_experts_per_tok = config.num_experts_per_tok
        
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_router_logits: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
        
        output_router_logits = output_router_logits if output_router_logits is not None else self.config.output_router_logits
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_router_logits=output_router_logits,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)
        
        # Final Soft Capping (Gemma 2 Specific feature)
        # tanh(logits / cap) * cap
        if self.config.logit_soft_capping is not None:
             logits = logits / self.config.logit_soft_capping
             logits = torch.tanh(logits)
             logits = logits * self.config.logit_soft_capping

        logits = logits.float()

        loss = None
        if labels is not None:
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            loss = loss_fct(shift_logits, shift_labels)

        aux_loss = None
        if output_router_logits:
            aux_loss = load_balancing_loss_func(
                outputs.router_logits if return_dict else outputs[-1],
                self.num_experts,
                self.num_experts_per_tok,
            )
            if labels is not None:
                loss += self.router_aux_loss_coef * aux_loss

        if not return_dict:
            output = (logits,) + outputs[1:]
            if output_router_logits:
                output = (aux_loss,) + output
            return (loss,) + output if loss is not None else output

        return MoeCausalLMOutputWithPast(
            loss=loss,
            aux_loss=aux_loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            router_logits=outputs.router_logits,
        )

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
        ):
        past_length = 0
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
                past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
                
                # --- HATA DÜZELTMESİ BAŞLANGICI ---
                # get_max_length metodunun varlığını kontrol ediyoruz
                if hasattr(past_key_values, "get_max_length") and past_key_values.get_max_length() is not None:
                    max_cache_length = torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
                else:
                    max_cache_length = None
                # --- HATA DÜZELTMESİ BİTİŞİ ---

                cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
            
            # Legacy Cache (Tuple formatı için)
            else:
                past_length = past_key_values[0][0].shape[2]
                max_cache_length = None

            # Keep only the unprocessed tokens:
            if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
            if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        if cache_position is None:
            # Inputs embeds veya input_ids hangisi varsa onun shape'ini al
            input_len = model_inputs.get("input_ids", inputs_embeds).shape[1]
            cache_position = torch.arange(past_length, past_length + input_len, device=input_ids.device)
        
        model_inputs.update(
            {
                "position_ids": position_ids,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
            )
        return reordered_past