File size: 31,325 Bytes
fd5ef13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team and Gemma2MoE Contributors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Gemma2MoE model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_outputs import MoeModelOutputWithPast, MoeCausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.generation import GenerationMixin
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from .configuration_gemma2moe import Gemma2MoeConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "Gemma2MoeConfig"
# --- Auxiliary Loss & Router Functions ---
def load_balancing_loss_func(gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2) -> float:
r"""
Computes auxiliary load balancing loss as in Switch Transformer.
"""
if gate_logits is None or not isinstance(gate_logits, torch.Tensor):
return 0.0
# gate_logits: [batch_size * seq_len, num_experts] assumed flattened or [batch, seq, experts]
if gate_logits.dim() == 3:
gate_logits = gate_logits.view(-1, gate_logits.shape[-1])
routing_weights = torch.softmax(gate_logits, dim=-1)
# top_k indices
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
# expert_mask: [num_tokens, num_experts]
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
if expert_mask.dim() == 3:
expert_mask = expert_mask.sum(dim=1) # Sum over k selected experts
# Normalize to get fraction of tokens per expert
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
# Mean probability per expert
router_prob_per_expert = torch.mean(routing_weights, dim=0)
# Loss = N * sum(f_i * P_i)
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert) * num_experts
return overall_loss
# --- Gemma 2 Components ---
class Gemma2RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.zeros(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float())
# Gemma 2 signature: output * (1 + weight)
# Casting back to input dtype
output = output * (1.0 + self.weight.float())
return output.type_as(x)
class Gemma2RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
self.register_buffer("inv_freq", None, persistent=False)
@torch.no_grad()
def forward(self, x, position_ids, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if self.inv_freq is None:
self.inv_freq = 1.0 / (
self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
)
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Use float32 for RoPE calculation to maintain precision
with torch.autocast(device_type=x.device.type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin):
"""Applies Rotary Position Embedding to the query and key tensors."""
cos = cos.unsqueeze(1) # [bs, 1, seq_len, head_dim]
sin = sin.unsqueeze(1)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
Used for Grouped Query Attention (GQA).
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class Gemma2Attention(nn.Module):
"""
Multi-headed attention with Soft-capping, Sliding Window and GQA.
"""
def __init__(self, config: Gemma2MoeConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.head_dim
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
# Gemma 2 scaling specific
self.scaling = config.query_pre_attn_scalar ** -0.5
# Soft capping parameter
self.attn_logit_soft_capping = config.attn_logit_soft_capping
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
self.rotary_emb = Gemma2RotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
self.sliding_window = config.sliding_window
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, position_ids=position_ids, seq_len=None)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# cache_position for static cache, legacy for dynamic
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position, "sliding_window": self.sliding_window}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# Scaled Dot Product Calculation
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling
# Logit Soft Capping
if self.attn_logit_soft_capping is not None:
attn_weights = attn_weights / self.attn_logit_soft_capping
attn_weights = torch.tanh(attn_weights)
attn_weights = attn_weights * self.attn_logit_soft_capping
if attention_mask is not None:
# Mask should be broadcastable
attn_weights = attn_weights + attention_mask
# Softmax and Dropout
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# --- Expert & MoE Block ---
class Gemma2MLP(nn.Module):
"""
Gemma 2 MLP: Gated GELU Tanh
"""
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class Gemma2MoeBlock(nn.Module):
"""
Sparse MoE Block for Gemma 2.
Uses Top-k gating and processes selected tokens through experts.
"""
def __init__(self, config: Gemma2MoeConfig):
super().__init__()
self.hidden_dim = config.hidden_size
self.num_experts = config.num_local_experts
self.top_k = config.num_experts_per_tok
self.jitter_noise = config.router_jitter_noise
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
self.experts = nn.ModuleList([Gemma2MLP(config) for _ in range(self.num_experts)])
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states_flat = hidden_states.view(-1, hidden_dim)
# Router Logits
router_logits = self.gate(hidden_states_flat)
if self.training and self.jitter_noise > 0:
router_logits += torch.empty_like(router_logits).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
routing_weights = F.softmax(router_logits, dim=1)
topk_weight, topk_idx = torch.topk(routing_weights, self.top_k, dim=-1, sorted=False)
# Normalize weights
topk_weight /= topk_weight.sum(dim=-1, keepdim=True)
topk_weight = topk_weight.to(hidden_states.dtype)
# Routing process
# Using a loop here for clarity and simplicity in Python.
# For extreme performance, Triton or CUDA kernels should be used.
final_hidden_states = torch.zeros_like(hidden_states_flat)
# Flatten indices to handle batching easier
flat_topk_idx = topk_idx.view(-1)
# We need to process each expert
for i, expert in enumerate(self.experts):
# Find tokens assigned to this expert (in any of the top-k slots)
# This is a bit inefficient in pure PyTorch but ensures correctness without custom kernels
# Create a mask for tokens where this expert is selected
expert_mask = (topk_idx == i)
if expert_mask.any():
# We need to collect inputs, process, and scatter back
# This logic handles cases where an expert is selected multiple times (unlikely in top-k but possible conceptually)
# But typically top-k implies distinct experts.
# Get indices where this expert is used
batch_indices, k_indices = torch.where(expert_mask)
# Extract inputs
inp = hidden_states_flat[batch_indices]
# Forward pass
out = expert(inp)
# Weighting: We need the weight associated with this selection
weights = topk_weight[batch_indices, k_indices]
# Accumulate result
# Ideally, scatter_add, but here we iterate.
# Since batch_indices might repeat if we allowed k repetitions (we don't usually),
# standard scatter_add_ is safer.
weighted_out = out * weights.unsqueeze(-1)
final_hidden_states.index_add_(0, batch_indices, weighted_out)
final_hidden_states = final_hidden_states.view(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
# --- Decoder Layer (Strict Gemma 2 Topology) ---
class Gemma2MoeDecoderLayer(nn.Module):
def __init__(self, config: Gemma2MoeConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Gemma2Attention(config, layer_idx)
self.block_sparse_moe = Gemma2MoeBlock(config)
# Gemma 2 uses 4 specific RMSNorms per layer
self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
# --- Attention Path ---
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = residual + hidden_states # Residual Connection
# --- MoE Path ---
residual = hidden_states
hidden_states = self.pre_feedforward_layernorm(hidden_states)
# Using MoE instead of standard MLP
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + hidden_states # Residual Connection
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
if output_router_logits:
outputs += (router_logits,)
return outputs
# --- PreTrained Model Wrappers ---
class Gemma2MoePreTrainedModel(PreTrainedModel):
config_class = Gemma2MoeConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Gemma2MoeDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = False # Keeping SDPA for broad compatibility logic implemented above
_supports_sdpa = True
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class Gemma2MoeModel(Gemma2MoePreTrainedModel):
def __init__(self, config: Gemma2MoeConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Gemma2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = output_router_logits if output_router_logits is not None else self.config.output_router_logits
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# 4D Attention Mask Creation (handles Sliding Window if config requests it)
causal_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(inputs_embeds.shape[0], inputs_embeds.shape[1]),
inputs_embeds,
past_key_values.get_seq_length() if past_key_values is not None else 0,
sliding_window=self.config.sliding_window,
)
# Normalization (Gemma 2 embedding scaling)
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=inputs_embeds.dtype)
hidden_states = inputs_embeds * normalizer
all_hidden_states = () if output_hidden_states else None
all_router_logits = () if output_router_logits else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
output_router_logits,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if output_router_logits:
all_router_logits += (layer_outputs[-1],)
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, past_key_values, all_hidden_states, all_router_logits] if v is not None)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
router_logits=all_router_logits,
)
class Gemma2MoeForCausalLM(Gemma2MoePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = Gemma2MoeModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.num_local_experts
self.num_experts_per_tok = config.num_experts_per_tok
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
output_router_logits = output_router_logits if output_router_logits is not None else self.config.output_router_logits
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
# Final Soft Capping (Gemma 2 Specific feature)
# tanh(logits / cap) * cap
if self.config.logit_soft_capping is not None:
logits = logits / self.config.logit_soft_capping
logits = torch.tanh(logits)
logits = logits * self.config.logit_soft_capping
logits = logits.float()
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
loss = loss_fct(shift_logits, shift_labels)
aux_loss = None
if output_router_logits:
aux_loss = load_balancing_loss_func(
outputs.router_logits if return_dict else outputs[-1],
self.num_experts,
self.num_experts_per_tok,
)
if labels is not None:
loss += self.router_aux_loss_coef * aux_loss
if not return_dict:
output = (logits,) + outputs[1:]
if output_router_logits:
output = (aux_loss,) + output
return (loss,) + output if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
):
past_length = 0
if past_key_values is not None:
if isinstance(past_key_values, Cache):
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
# --- HATA DÜZELTMESİ BAŞLANGICI ---
# get_max_length metodunun varlığını kontrol ediyoruz
if hasattr(past_key_values, "get_max_length") and past_key_values.get_max_length() is not None:
max_cache_length = torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
else:
max_cache_length = None
# --- HATA DÜZELTMESİ BİTİŞİ ---
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
# Legacy Cache (Tuple formatı için)
else:
past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
if cache_position is None:
# Inputs embeds veya input_ids hangisi varsa onun shape'ini al
input_len = model_inputs.get("input_ids", inputs_embeds).shape[1]
cache_position = torch.arange(past_length, past_length + input_len, device=input_ids.device)
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past |