Robotics
LeRobot
Safetensors
sac
spirosperos's picture
Upload policy weights, train config and readme
eb8d6f1 verified
metadata
datasets: spirosperos/grid-position-prediction
library_name: lerobot
license: apache-2.0
model_name: sac
pipeline_tag: robotics
tags:
  - sac
  - robotics
  - lerobot

Model Card for sac

Soft Actor-Critic (SAC) is an entropy-regularised actor-critic algorithm offering stable, sample-efficient learning in continuous-control environments.

This policy has been trained and pushed to the Hub using LeRobot. See the full documentation at LeRobot Docs.


How to Get Started with the Model

For a complete walkthrough, see the training guide. Below is the short version on how to train and run inference/eval:

Train from scratch

lerobot-train \
  --dataset.repo_id=${HF_USER}/<dataset> \
  --policy.type=act \
  --output_dir=outputs/train/<desired_policy_repo_id> \
  --job_name=lerobot_training \
  --policy.device=cuda \
  --policy.repo_id=${HF_USER}/<desired_policy_repo_id>
  --wandb.enable=true

Writes checkpoints to outputs/train/<desired_policy_repo_id>/checkpoints/.

Evaluate the policy/run inference

lerobot-record \
  --robot.type=so100_follower \
  --dataset.repo_id=<hf_user>/eval_<dataset> \
  --policy.path=<hf_user>/<desired_policy_repo_id> \
  --episodes=10

Prefix the dataset repo with eval_ and supply --policy.path pointing to a local or hub checkpoint.


Model Details

  • License: apache-2.0