lsatone / backend /ai_model_manager.py
3v324v23's picture
Update Comic123 with local comic folder files
83e35a7
"""
AI Model Manager for State-of-the-Art Image Enhancement
Manages Real-ESRGAN, GFPGAN, SwinIR and other models
Optimized for NVIDIA RTX 3050
"""
import os
import torch
import numpy as np
import cv2
from PIL import Image
import requests
from tqdm import tqdm
import hashlib
from typing import Optional, Dict, Any
import warnings
warnings.filterwarnings('ignore')
# Model URLs and checksums
MODEL_URLS = {
'RealESRGAN_x4plus': {
'url': 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth',
'hash': '4fa0d38905f75ac06eb49a7951b426670021be3018265fd191d2125df9d682f1'
},
'RealESRGAN_x4plus_anime_6B': {
'url': 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth',
'hash': 'f872d837d3c90ed2e05227bed711af5671a6fd1c9f7d7e91c911a61f155e99da'
},
'RealESRNet_x4plus': {
'url': 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth',
'hash': '99ec365d4afad750833258a1a24f44ca3fefd45f1bb7f14e1d195f21934bb428'
},
'GFPGAN_v1.3': {
'url': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
'hash': 'c953a88f2ba4e03fb985a7582126c2267b4c3db0e50def3448b844e88e8b8f5e'
},
'detection_Resnet50_Final': {
'url': 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth',
'hash': '6d1de9c2944f2ccddca5f5e010ea5ae64a39845a86311af6fdf30841b0a5a16d'
},
'parsing_parsenet': {
'url': 'https://github.com/xinntao/facexlib/releases/download/v0.2.0/parsing_parsenet.pth',
'hash': '3d558d8d0e42c20224f13cf5a29c79eba2d59913419f945545d8cf7b72920de2'
}
}
class AIModelManager:
"""Manages AI models for image enhancement with GPU optimization"""
def __init__(self, device=None, model_dir='models'):
"""Initialize model manager with RTX 3050 optimization"""
# Set device - prioritize CUDA for RTX 3050
if device is None:
if torch.cuda.is_available():
self.device = torch.device('cuda:0')
print(f"🚀 Using GPU: {torch.cuda.get_device_name(0)}")
# RTX 3050 optimization settings
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# Set memory fraction to avoid OOM on 4GB/8GB RTX 3050
torch.cuda.set_per_process_memory_fraction(0.8)
else:
self.device = torch.device('cpu')
print("💻 Using CPU (GPU not available)")
else:
self.device = device
self.model_dir = model_dir
os.makedirs(self.model_dir, exist_ok=True)
# Model instances
self.realesrgan = None
self.realesrgan_anime = None
self.gfpgan = None
self.face_enhancer = None
# Model configs
self.current_models = {}
def download_model(self, model_name: str) -> str:
"""Download model if not exists"""
if model_name not in MODEL_URLS:
raise ValueError(f"Unknown model: {model_name}")
model_info = MODEL_URLS[model_name]
model_path = os.path.join(self.model_dir, f"{model_name}.pth")
# Check if already exists and valid
if os.path.exists(model_path):
print(f"✅ Model {model_name} already exists")
return model_path
print(f"📥 Downloading {model_name}...")
# Download with progress bar
response = requests.get(model_info['url'], stream=True)
total_size = int(response.headers.get('content-length', 0))
with open(model_path, 'wb') as f:
with tqdm(total=total_size, unit='iB', unit_scale=True) as pbar:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
pbar.update(len(chunk))
print(f"✅ Downloaded {model_name}")
return model_path
def load_realesrgan(self, model_name='RealESRGAN_x4plus', scale=4):
"""Load Real-ESRGAN model optimized for RTX 3050"""
try:
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
print(f"🔄 Loading {model_name}...")
# Download model if needed
model_path = self.download_model(model_name)
# Different architectures for different models
if 'anime' in model_name:
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6)
else:
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23)
# Initialize upsampler
self.realesrgan = RealESRGANer(
scale=scale,
model_path=model_path,
model=model,
device=self.device,
# RTX 3050 optimizations
tile=256, # Smaller tile size for 4GB VRAM
tile_pad=10,
pre_pad=0,
half=True if self.device.type == 'cuda' else False # FP16 for GPU
)
if 'anime' in model_name:
self.realesrgan_anime = self.realesrgan
print(f"✅ Loaded {model_name} on {self.device}")
return True
except Exception as e:
print(f"❌ Failed to load Real-ESRGAN: {e}")
return False
def load_gfpgan(self):
"""Load GFPGAN for face enhancement"""
try:
from gfpgan import GFPGANer
print("🔄 Loading GFPGAN v1.3...")
# Download models
model_path = self.download_model('GFPGAN_v1.3')
det_model_path = self.download_model('detection_Resnet50_Final')
parse_model_path = self.download_model('parsing_parsenet')
# Initialize GFPGAN
self.gfpgan = GFPGANer(
model_path=model_path,
upscale=2,
arch='clean',
channel_multiplier=2,
bg_upsampler=self.realesrgan, # Use Real-ESRGAN for background
device=self.device
)
print("✅ Loaded GFPGAN on", self.device)
return True
except Exception as e:
print(f"❌ Failed to load GFPGAN: {e}")
return False
def enhance_image_realesrgan(self, image, use_anime_model=False):
"""Enhance image using Real-ESRGAN"""
if use_anime_model and self.realesrgan_anime:
upsampler = self.realesrgan_anime
else:
upsampler = self.realesrgan
if upsampler is None:
model_name = 'RealESRGAN_x4plus_anime_6B' if use_anime_model else 'RealESRGAN_x4plus'
if not self.load_realesrgan(model_name):
return image
upsampler = self.realesrgan_anime if use_anime_model else self.realesrgan
try:
# Convert to numpy if PIL Image
if isinstance(image, Image.Image):
image = np.array(image)
# Ensure BGR format for Real-ESRGAN
if len(image.shape) == 2: # Grayscale
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
elif image.shape[2] == 4: # RGBA
image = cv2.cvtColor(image, cv2.COLOR_RGBA2BGR)
elif image.shape[2] == 3: # RGB
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Enhance
with torch.no_grad():
output, _ = upsampler.enhance(image, outscale=4)
# Limit to 2K resolution
h, w = output.shape[:2]
if w > 2048 or h > 1080:
scale = min(2048/w, 1080/h)
new_w = int(w * scale)
new_h = int(h * scale)
output = cv2.resize(output, (new_w, new_h), interpolation=cv2.INTER_LANCZOS4)
print(f" 📐 Resized from {w}x{h} to {new_w}x{new_h} (2K limit)")
return output
except Exception as e:
print(f"❌ Real-ESRGAN enhancement failed: {e}")
return image
def enhance_face_gfpgan(self, image, only_center_face=False, paste_back=True):
"""Enhance faces in image using GFPGAN"""
if self.gfpgan is None:
if not self.load_gfpgan():
return image
try:
# Convert to numpy if needed
if isinstance(image, Image.Image):
image = np.array(image)
# Ensure BGR format
if len(image.shape) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
elif image.shape[2] == 4:
image = cv2.cvtColor(image, cv2.COLOR_RGBA2BGR)
elif image.shape[2] == 3:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Enhance faces
with torch.no_grad():
_, _, output = self.gfpgan.enhance(
image,
has_aligned=False,
only_center_face=only_center_face,
paste_back=paste_back,
weight=0.5
)
return output
except Exception as e:
print(f"❌ GFPGAN enhancement failed: {e}")
return image
def enhance_image_pipeline(self, image_path: str, output_path: str = None,
enhance_face=True, use_anime_model=False) -> str:
"""Complete enhancement pipeline optimized for RTX 3050"""
print(f"🎨 Enhancing {os.path.basename(image_path)}...")
try:
# Load image
image = cv2.imread(image_path)
if image is None:
print(f"❌ Failed to load image: {image_path}")
return image_path
original_shape = image.shape[:2]
# Step 1: Super-resolution with Real-ESRGAN (max 2K)
print(" 📈 Applying super-resolution (max 2K)...")
enhanced = self.enhance_image_realesrgan(image, use_anime_model)
# Step 2: Face enhancement with GFPGAN (if faces detected)
if enhance_face:
print(" 👤 Enhancing faces...")
enhanced = self.enhance_face_gfpgan(enhanced)
# Step 3: Additional post-processing
print(" ✨ Applying final enhancements...")
enhanced = self.post_process(enhanced)
# Save result
if output_path is None:
output_path = image_path.replace('.', '_enhanced.')
cv2.imwrite(output_path, enhanced, [cv2.IMWRITE_JPEG_QUALITY, 95])
new_shape = enhanced.shape[:2]
print(f" ✅ Enhanced: {original_shape}{new_shape}")
return output_path
except Exception as e:
print(f"❌ Enhancement pipeline failed: {e}")
return image_path
def post_process(self, image):
"""Additional post-processing for enhanced quality"""
try:
# 1. Slight sharpening
kernel = np.array([[-0.5,-0.5,-0.5],
[-0.5, 5,-0.5],
[-0.5,-0.5,-0.5]]) / 1
image = cv2.filter2D(image, -1, kernel)
# 2. Color enhancement in LAB space
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(lab)
# Enhance L channel with CLAHE
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
l = clahe.apply(l)
# Enhance color channels slightly
a = cv2.convertScaleAbs(a, alpha=1.1, beta=0)
b = cv2.convertScaleAbs(b, alpha=1.1, beta=0)
enhanced = cv2.merge([l, a, b])
enhanced = cv2.cvtColor(enhanced, cv2.COLOR_LAB2BGR)
# 3. Final brightness/contrast adjustment
enhanced = cv2.convertScaleAbs(enhanced, alpha=1.05, beta=5)
return enhanced
except Exception as e:
print(f"⚠️ Post-processing failed: {e}")
return image
def clear_memory(self):
"""Clear GPU memory - important for RTX 3050 with limited VRAM"""
if self.device.type == 'cuda':
torch.cuda.empty_cache()
torch.cuda.synchronize()
# Global instance
_ai_model_manager = None
def get_ai_model_manager():
"""Get or create global AI model manager"""
global _ai_model_manager
if _ai_model_manager is None:
_ai_model_manager = AIModelManager()
return _ai_model_manager