File size: 13,520 Bytes
83e35a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
"""
AI Model Manager for State-of-the-Art Image Enhancement
Manages Real-ESRGAN, GFPGAN, SwinIR and other models
Optimized for NVIDIA RTX 3050
"""
import os
import torch
import numpy as np
import cv2
from PIL import Image
import requests
from tqdm import tqdm
import hashlib
from typing import Optional, Dict, Any
import warnings
warnings.filterwarnings('ignore')
# Model URLs and checksums
MODEL_URLS = {
'RealESRGAN_x4plus': {
'url': 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth',
'hash': '4fa0d38905f75ac06eb49a7951b426670021be3018265fd191d2125df9d682f1'
},
'RealESRGAN_x4plus_anime_6B': {
'url': 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth',
'hash': 'f872d837d3c90ed2e05227bed711af5671a6fd1c9f7d7e91c911a61f155e99da'
},
'RealESRNet_x4plus': {
'url': 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth',
'hash': '99ec365d4afad750833258a1a24f44ca3fefd45f1bb7f14e1d195f21934bb428'
},
'GFPGAN_v1.3': {
'url': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
'hash': 'c953a88f2ba4e03fb985a7582126c2267b4c3db0e50def3448b844e88e8b8f5e'
},
'detection_Resnet50_Final': {
'url': 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth',
'hash': '6d1de9c2944f2ccddca5f5e010ea5ae64a39845a86311af6fdf30841b0a5a16d'
},
'parsing_parsenet': {
'url': 'https://github.com/xinntao/facexlib/releases/download/v0.2.0/parsing_parsenet.pth',
'hash': '3d558d8d0e42c20224f13cf5a29c79eba2d59913419f945545d8cf7b72920de2'
}
}
class AIModelManager:
"""Manages AI models for image enhancement with GPU optimization"""
def __init__(self, device=None, model_dir='models'):
"""Initialize model manager with RTX 3050 optimization"""
# Set device - prioritize CUDA for RTX 3050
if device is None:
if torch.cuda.is_available():
self.device = torch.device('cuda:0')
print(f"π Using GPU: {torch.cuda.get_device_name(0)}")
# RTX 3050 optimization settings
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# Set memory fraction to avoid OOM on 4GB/8GB RTX 3050
torch.cuda.set_per_process_memory_fraction(0.8)
else:
self.device = torch.device('cpu')
print("π» Using CPU (GPU not available)")
else:
self.device = device
self.model_dir = model_dir
os.makedirs(self.model_dir, exist_ok=True)
# Model instances
self.realesrgan = None
self.realesrgan_anime = None
self.gfpgan = None
self.face_enhancer = None
# Model configs
self.current_models = {}
def download_model(self, model_name: str) -> str:
"""Download model if not exists"""
if model_name not in MODEL_URLS:
raise ValueError(f"Unknown model: {model_name}")
model_info = MODEL_URLS[model_name]
model_path = os.path.join(self.model_dir, f"{model_name}.pth")
# Check if already exists and valid
if os.path.exists(model_path):
print(f"β
Model {model_name} already exists")
return model_path
print(f"π₯ Downloading {model_name}...")
# Download with progress bar
response = requests.get(model_info['url'], stream=True)
total_size = int(response.headers.get('content-length', 0))
with open(model_path, 'wb') as f:
with tqdm(total=total_size, unit='iB', unit_scale=True) as pbar:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
pbar.update(len(chunk))
print(f"β
Downloaded {model_name}")
return model_path
def load_realesrgan(self, model_name='RealESRGAN_x4plus', scale=4):
"""Load Real-ESRGAN model optimized for RTX 3050"""
try:
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
print(f"π Loading {model_name}...")
# Download model if needed
model_path = self.download_model(model_name)
# Different architectures for different models
if 'anime' in model_name:
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6)
else:
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23)
# Initialize upsampler
self.realesrgan = RealESRGANer(
scale=scale,
model_path=model_path,
model=model,
device=self.device,
# RTX 3050 optimizations
tile=256, # Smaller tile size for 4GB VRAM
tile_pad=10,
pre_pad=0,
half=True if self.device.type == 'cuda' else False # FP16 for GPU
)
if 'anime' in model_name:
self.realesrgan_anime = self.realesrgan
print(f"β
Loaded {model_name} on {self.device}")
return True
except Exception as e:
print(f"β Failed to load Real-ESRGAN: {e}")
return False
def load_gfpgan(self):
"""Load GFPGAN for face enhancement"""
try:
from gfpgan import GFPGANer
print("π Loading GFPGAN v1.3...")
# Download models
model_path = self.download_model('GFPGAN_v1.3')
det_model_path = self.download_model('detection_Resnet50_Final')
parse_model_path = self.download_model('parsing_parsenet')
# Initialize GFPGAN
self.gfpgan = GFPGANer(
model_path=model_path,
upscale=2,
arch='clean',
channel_multiplier=2,
bg_upsampler=self.realesrgan, # Use Real-ESRGAN for background
device=self.device
)
print("β
Loaded GFPGAN on", self.device)
return True
except Exception as e:
print(f"β Failed to load GFPGAN: {e}")
return False
def enhance_image_realesrgan(self, image, use_anime_model=False):
"""Enhance image using Real-ESRGAN"""
if use_anime_model and self.realesrgan_anime:
upsampler = self.realesrgan_anime
else:
upsampler = self.realesrgan
if upsampler is None:
model_name = 'RealESRGAN_x4plus_anime_6B' if use_anime_model else 'RealESRGAN_x4plus'
if not self.load_realesrgan(model_name):
return image
upsampler = self.realesrgan_anime if use_anime_model else self.realesrgan
try:
# Convert to numpy if PIL Image
if isinstance(image, Image.Image):
image = np.array(image)
# Ensure BGR format for Real-ESRGAN
if len(image.shape) == 2: # Grayscale
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
elif image.shape[2] == 4: # RGBA
image = cv2.cvtColor(image, cv2.COLOR_RGBA2BGR)
elif image.shape[2] == 3: # RGB
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Enhance
with torch.no_grad():
output, _ = upsampler.enhance(image, outscale=4)
# Limit to 2K resolution
h, w = output.shape[:2]
if w > 2048 or h > 1080:
scale = min(2048/w, 1080/h)
new_w = int(w * scale)
new_h = int(h * scale)
output = cv2.resize(output, (new_w, new_h), interpolation=cv2.INTER_LANCZOS4)
print(f" π Resized from {w}x{h} to {new_w}x{new_h} (2K limit)")
return output
except Exception as e:
print(f"β Real-ESRGAN enhancement failed: {e}")
return image
def enhance_face_gfpgan(self, image, only_center_face=False, paste_back=True):
"""Enhance faces in image using GFPGAN"""
if self.gfpgan is None:
if not self.load_gfpgan():
return image
try:
# Convert to numpy if needed
if isinstance(image, Image.Image):
image = np.array(image)
# Ensure BGR format
if len(image.shape) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
elif image.shape[2] == 4:
image = cv2.cvtColor(image, cv2.COLOR_RGBA2BGR)
elif image.shape[2] == 3:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Enhance faces
with torch.no_grad():
_, _, output = self.gfpgan.enhance(
image,
has_aligned=False,
only_center_face=only_center_face,
paste_back=paste_back,
weight=0.5
)
return output
except Exception as e:
print(f"β GFPGAN enhancement failed: {e}")
return image
def enhance_image_pipeline(self, image_path: str, output_path: str = None,
enhance_face=True, use_anime_model=False) -> str:
"""Complete enhancement pipeline optimized for RTX 3050"""
print(f"π¨ Enhancing {os.path.basename(image_path)}...")
try:
# Load image
image = cv2.imread(image_path)
if image is None:
print(f"β Failed to load image: {image_path}")
return image_path
original_shape = image.shape[:2]
# Step 1: Super-resolution with Real-ESRGAN (max 2K)
print(" π Applying super-resolution (max 2K)...")
enhanced = self.enhance_image_realesrgan(image, use_anime_model)
# Step 2: Face enhancement with GFPGAN (if faces detected)
if enhance_face:
print(" π€ Enhancing faces...")
enhanced = self.enhance_face_gfpgan(enhanced)
# Step 3: Additional post-processing
print(" β¨ Applying final enhancements...")
enhanced = self.post_process(enhanced)
# Save result
if output_path is None:
output_path = image_path.replace('.', '_enhanced.')
cv2.imwrite(output_path, enhanced, [cv2.IMWRITE_JPEG_QUALITY, 95])
new_shape = enhanced.shape[:2]
print(f" β
Enhanced: {original_shape} β {new_shape}")
return output_path
except Exception as e:
print(f"β Enhancement pipeline failed: {e}")
return image_path
def post_process(self, image):
"""Additional post-processing for enhanced quality"""
try:
# 1. Slight sharpening
kernel = np.array([[-0.5,-0.5,-0.5],
[-0.5, 5,-0.5],
[-0.5,-0.5,-0.5]]) / 1
image = cv2.filter2D(image, -1, kernel)
# 2. Color enhancement in LAB space
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(lab)
# Enhance L channel with CLAHE
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
l = clahe.apply(l)
# Enhance color channels slightly
a = cv2.convertScaleAbs(a, alpha=1.1, beta=0)
b = cv2.convertScaleAbs(b, alpha=1.1, beta=0)
enhanced = cv2.merge([l, a, b])
enhanced = cv2.cvtColor(enhanced, cv2.COLOR_LAB2BGR)
# 3. Final brightness/contrast adjustment
enhanced = cv2.convertScaleAbs(enhanced, alpha=1.05, beta=5)
return enhanced
except Exception as e:
print(f"β οΈ Post-processing failed: {e}")
return image
def clear_memory(self):
"""Clear GPU memory - important for RTX 3050 with limited VRAM"""
if self.device.type == 'cuda':
torch.cuda.empty_cache()
torch.cuda.synchronize()
# Global instance
_ai_model_manager = None
def get_ai_model_manager():
"""Get or create global AI model manager"""
global _ai_model_manager
if _ai_model_manager is None:
_ai_model_manager = AIModelManager()
return _ai_model_manager |