|
|
import gc |
|
|
import os |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.optim as optim |
|
|
import tempfile |
|
|
import gradio as gr |
|
|
from datasets import load_dataset |
|
|
from transformers import AutoTokenizer, AutoModel |
|
|
from flashpack import FlashPackMixin |
|
|
from huggingface_hub import Repository |
|
|
from typing import Tuple |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
device = torch.device("cpu") |
|
|
torch.set_num_threads(4) |
|
|
print(f"🔧 Using device: {device} (CPU-only)") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GemmaTrainer(nn.Module, FlashPackMixin): |
|
|
def __init__(self, input_dim: int, hidden_dim: int = 1024, output_dim: int = 1536): |
|
|
super().__init__() |
|
|
self.fc1 = nn.Linear(input_dim, hidden_dim) |
|
|
self.relu = nn.ReLU() |
|
|
self.fc2 = nn.Linear(hidden_dim, hidden_dim) |
|
|
self.fc3 = nn.Linear(hidden_dim, output_dim) |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
x = self.fc1(x) |
|
|
x = self.relu(x) |
|
|
x = self.fc2(x) |
|
|
x = self.relu(x) |
|
|
x = self.fc3(x) |
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def build_encoder(model_name="gpt2", max_length: int = 128): |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
if tokenizer.pad_token is None: |
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
embed_model = AutoModel.from_pretrained(model_name).to(device) |
|
|
embed_model.eval() |
|
|
|
|
|
@torch.no_grad() |
|
|
def encode(prompt: str) -> torch.Tensor: |
|
|
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, |
|
|
padding="max_length", max_length=max_length).to(device) |
|
|
last_hidden = embed_model(**inputs).last_hidden_state |
|
|
mean_pool = last_hidden.mean(dim=1) |
|
|
max_pool, _ = last_hidden.max(dim=1) |
|
|
return torch.cat([mean_pool, max_pool], dim=1).cpu() |
|
|
|
|
|
return tokenizer, embed_model, encode |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def push_flashpack_model_to_hf(model, hf_repo: str): |
|
|
logs = [] |
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
|
logs.append(f"📂 Temporary directory: {tmp_dir}") |
|
|
repo = Repository(local_dir=tmp_dir, clone_from=hf_repo, use_auth_token=True) |
|
|
pack_path = os.path.join(tmp_dir, "model.flashpack") |
|
|
model.save_flashpack(pack_path, target_dtype=torch.float32) |
|
|
readme_path = os.path.join(tmp_dir, "README.md") |
|
|
with open(readme_path, "w") as f: |
|
|
f.write("# FlashPack Model\nThis repo contains a FlashPack model.") |
|
|
repo.push_to_hub() |
|
|
logs.append(f"✅ Model pushed to HF: {hf_repo}") |
|
|
return logs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train_flashpack_model( |
|
|
dataset_name: str = "rahul7star/prompt-enhancer-dataset", |
|
|
max_encode: int = 1000, |
|
|
hidden_dim: int = 1024, |
|
|
push_to_hub: bool = True, |
|
|
hf_repo: str = "rahul7star/FlashPack" |
|
|
) -> Tuple[GemmaTrainer, object, object, object, torch.Tensor]: |
|
|
|
|
|
print("📦 Loading dataset...") |
|
|
dataset = load_dataset(dataset_name, split="train") |
|
|
limit = min(max_encode, len(dataset)) |
|
|
dataset = dataset.select(range(limit)) |
|
|
print(f"⚡ Using {len(dataset)} prompts for training") |
|
|
|
|
|
tokenizer, embed_model, encode_fn = build_encoder("gpt2", max_length=128) |
|
|
|
|
|
|
|
|
short_list, long_list = [], [] |
|
|
for i, item in enumerate(dataset): |
|
|
short_list.append(encode_fn(item["short_prompt"])) |
|
|
long_list.append(encode_fn(item["long_prompt"])) |
|
|
if (i+1) % 50 == 0 or (i+1) == len(dataset): |
|
|
print(f" → Encoded {i+1}/{limit} prompts") |
|
|
gc.collect() |
|
|
|
|
|
short_embeddings = torch.vstack(short_list) |
|
|
long_embeddings = torch.vstack(long_list) |
|
|
print(f"✅ Encoded embeddings shape: short {short_embeddings.shape}, long {long_embeddings.shape}") |
|
|
|
|
|
input_dim = short_embeddings.shape[1] |
|
|
output_dim = long_embeddings.shape[1] |
|
|
|
|
|
model = GemmaTrainer(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim).to(device) |
|
|
|
|
|
criterion = nn.CosineSimilarity(dim=1) |
|
|
optimizer = optim.Adam(model.parameters(), lr=1e-3) |
|
|
max_epochs = 50 |
|
|
batch_size = 32 |
|
|
n = short_embeddings.shape[0] |
|
|
|
|
|
print("🚀 Training model...") |
|
|
for epoch in range(max_epochs): |
|
|
model.train() |
|
|
epoch_loss = 0.0 |
|
|
perm = torch.randperm(n) |
|
|
for start in range(0, n, batch_size): |
|
|
idx = perm[start:start+batch_size] |
|
|
inputs = short_embeddings[idx].to(device) |
|
|
targets = long_embeddings[idx].to(device) |
|
|
|
|
|
optimizer.zero_grad() |
|
|
outputs = model(inputs) |
|
|
loss = 1 - criterion(outputs, targets).mean() |
|
|
loss.backward() |
|
|
optimizer.step() |
|
|
epoch_loss += loss.item() * inputs.size(0) |
|
|
|
|
|
epoch_loss /= n |
|
|
if epoch % 5 == 0 or epoch == max_epochs-1: |
|
|
print(f"Epoch {epoch+1}/{max_epochs}, Loss={epoch_loss:.6f}") |
|
|
|
|
|
print("✅ Training finished!") |
|
|
|
|
|
if push_to_hub: |
|
|
logs = push_flashpack_model_to_hf(model, hf_repo) |
|
|
for log in logs: |
|
|
print(log) |
|
|
|
|
|
return model, dataset, embed_model, tokenizer, long_embeddings |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_flashpack_model(hf_repo="rahul7star/FlashPack"): |
|
|
try: |
|
|
print(f"🔁 Attempting to load FlashPack model from {hf_repo}") |
|
|
model = GemmaTrainer.from_flashpack(hf_repo) |
|
|
model.eval() |
|
|
tokenizer, embed_model, encode_fn = build_encoder("gpt2", max_length=128) |
|
|
return model, tokenizer, embed_model |
|
|
except Exception as e: |
|
|
print(f"⚠️ Load failed: {e}") |
|
|
print("⏬ Training a new FlashPack model locally...") |
|
|
model, dataset, embed_model, tokenizer, long_embeddings = train_flashpack_model() |
|
|
push_flashpack_model_to_hf(model, hf_repo) |
|
|
return model, tokenizer, embed_model, dataset, long_embeddings |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model, tokenizer, embed_model, dataset, long_embeddings = get_flashpack_model() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
|
def encode_for_inference(prompt: str) -> torch.Tensor: |
|
|
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, |
|
|
padding="max_length", max_length=128).to(device) |
|
|
last_hidden = embed_model(**inputs).last_hidden_state |
|
|
mean_pool = last_hidden.mean(dim=1) |
|
|
max_pool, _ = last_hidden.max(dim=1) |
|
|
return torch.cat([mean_pool, max_pool], dim=1).cpu() |
|
|
|
|
|
def enhance_prompt(user_prompt: str, temperature: float, max_tokens: int, chat_history): |
|
|
chat_history = chat_history or [] |
|
|
short_emb = encode_for_inference(user_prompt) |
|
|
mapped = model(short_emb.to(device)).cpu() |
|
|
|
|
|
sims = (long_embeddings @ mapped.t()).squeeze(1) |
|
|
long_norms = long_embeddings.norm(dim=1) |
|
|
mapped_norm = mapped.norm() |
|
|
sims = sims / (long_norms * (mapped_norm + 1e-12)) |
|
|
|
|
|
best_idx = int(sims.argmax().item()) |
|
|
enhanced_prompt = dataset[best_idx]["long_prompt"] |
|
|
|
|
|
chat_history.append({"role": "user", "content": user_prompt}) |
|
|
chat_history.append({"role": "assistant", "content": enhanced_prompt}) |
|
|
return chat_history |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks(title="Prompt Enhancer – FlashPack (CPU)", theme=gr.themes.Soft()) as demo: |
|
|
gr.Markdown( |
|
|
""" |
|
|
# ✨ Prompt Enhancer (FlashPack mapper) |
|
|
Enter a short prompt, and the model will **expand it with details and creative context**. |
|
|
(CPU-only mode.) |
|
|
""" |
|
|
) |
|
|
|
|
|
with gr.Row(): |
|
|
chatbot = gr.Chatbot(height=400, label="Enhanced Prompts", type="messages") |
|
|
with gr.Column(scale=1): |
|
|
user_prompt = gr.Textbox(placeholder="Enter a short prompt...", label="Your Prompt", lines=3) |
|
|
temperature = gr.Slider(0.0, 1.0, value=0.7, step=0.05, label="Temperature") |
|
|
max_tokens = gr.Slider(32, 256, value=128, step=16, label="Max Tokens") |
|
|
send_btn = gr.Button("🚀 Enhance Prompt", variant="primary") |
|
|
clear_btn = gr.Button("🧹 Clear Chat") |
|
|
|
|
|
send_btn.click(enhance_prompt, [user_prompt, temperature, max_tokens, chatbot], chatbot) |
|
|
user_prompt.submit(enhance_prompt, [user_prompt, temperature, max_tokens, chatbot], chatbot) |
|
|
clear_btn.click(lambda: [], None, chatbot) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch(show_error=True) |