Spaces:
Running
on
Zero
Running
on
Zero
Fix: Ensure Object is Correctly Placed in Scene without Texturing when the texture is not provided
#4
by
moulichand
- opened
pops.py
CHANGED
|
@@ -1,231 +1,230 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
from PIL import Image
|
| 4 |
-
from diffusers import PriorTransformer, UNet2DConditionModel, KandinskyV22Pipeline
|
| 5 |
-
from huggingface_hub import hf_hub_download
|
| 6 |
-
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor, CLIPTokenizer, CLIPTextModelWithProjection
|
| 7 |
-
|
| 8 |
-
from model import pops_utils
|
| 9 |
-
from model.pipeline_pops import pOpsPipeline
|
| 10 |
-
|
| 11 |
-
kandinsky_prior_repo: str = 'kandinsky-community/kandinsky-2-2-prior'
|
| 12 |
-
kandinsky_decoder_repo: str = 'kandinsky-community/kandinsky-2-2-decoder'
|
| 13 |
-
prior_texture_repo: str = 'models/texturing/learned_prior.pth'
|
| 14 |
-
prior_instruct_repo: str = 'models/instruct/learned_prior.pth'
|
| 15 |
-
prior_scene_repo: str = 'models/scene/learned_prior.pth'
|
| 16 |
-
prior_repo = "pOpsPaper/operators"
|
| 17 |
-
|
| 18 |
-
# gpu = torch.device('cuda')
|
| 19 |
-
# cpu = torch.device('cpu')
|
| 20 |
-
|
| 21 |
-
class PopsPipelines:
|
| 22 |
-
def __init__(self):
|
| 23 |
-
weight_dtype = torch.float16
|
| 24 |
-
self.weight_dtype = weight_dtype
|
| 25 |
-
device = 'cpu' #torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 26 |
-
self.device = 'cuda' #device
|
| 27 |
-
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(kandinsky_prior_repo,
|
| 28 |
-
subfolder='image_encoder',
|
| 29 |
-
torch_dtype=weight_dtype).eval()
|
| 30 |
-
self.image_encoder.requires_grad_(False)
|
| 31 |
-
|
| 32 |
-
self.image_processor = CLIPImageProcessor.from_pretrained(kandinsky_prior_repo,
|
| 33 |
-
subfolder='image_processor')
|
| 34 |
-
|
| 35 |
-
self.tokenizer = CLIPTokenizer.from_pretrained(kandinsky_prior_repo, subfolder='tokenizer')
|
| 36 |
-
self.text_encoder = CLIPTextModelWithProjection.from_pretrained(kandinsky_prior_repo,
|
| 37 |
-
subfolder='text_encoder',
|
| 38 |
-
torch_dtype=weight_dtype).eval().to(device)
|
| 39 |
-
|
| 40 |
-
# Load full model for vis
|
| 41 |
-
self.unet = UNet2DConditionModel.from_pretrained(kandinsky_decoder_repo,
|
| 42 |
-
subfolder='unet').to(torch.float16).to(device)
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
self.decoder = KandinskyV22Pipeline.from_pretrained(kandinsky_decoder_repo, unet=self.unet,
|
| 46 |
-
torch_dtype=torch.float16)
|
| 47 |
-
self.decoder = self.decoder.to(device)
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
self.priors_dict = {
|
| 51 |
-
'texturing':{'repo':prior_texture_repo},
|
| 52 |
-
'instruct': {'repo': prior_instruct_repo},
|
| 53 |
-
'scene': {'repo':prior_scene_repo}
|
| 54 |
-
}
|
| 55 |
-
|
| 56 |
-
for prior_type in self.priors_dict:
|
| 57 |
-
prior_path = self.priors_dict[prior_type]['repo']
|
| 58 |
-
prior = PriorTransformer.from_pretrained(
|
| 59 |
-
kandinsky_prior_repo, subfolder="prior"
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
# Load from huggingface
|
| 63 |
-
prior_path = hf_hub_download(repo_id=prior_repo, filename=str(prior_path))
|
| 64 |
-
prior_state_dict = torch.load(prior_path, map_location=device)
|
| 65 |
-
prior.load_state_dict(prior_state_dict, strict=False)
|
| 66 |
-
|
| 67 |
-
prior.eval()
|
| 68 |
-
prior = prior.to(weight_dtype)
|
| 69 |
-
|
| 70 |
-
prior_pipeline = pOpsPipeline.from_pretrained(kandinsky_prior_repo,
|
| 71 |
-
prior=prior,
|
| 72 |
-
image_encoder=self.image_encoder,
|
| 73 |
-
torch_dtype=torch.float16)
|
| 74 |
-
|
| 75 |
-
self.priors_dict[prior_type]['pipeline'] = prior_pipeline
|
| 76 |
-
|
| 77 |
-
def process_image(self, input_path):
|
| 78 |
-
if input_path is None:
|
| 79 |
-
return None
|
| 80 |
-
image_pil = Image.open(input_path).convert("RGB").resize((512, 512))
|
| 81 |
-
image = torch.Tensor(self.image_processor(image_pil)['pixel_values'][0]).to(self.device).unsqueeze(0).to(
|
| 82 |
-
self.weight_dtype)
|
| 83 |
-
|
| 84 |
-
return image
|
| 85 |
-
|
| 86 |
-
def process_text(self, text):
|
| 87 |
-
self.text_encoder.to('cuda')
|
| 88 |
-
text_inputs = self.tokenizer(
|
| 89 |
-
text,
|
| 90 |
-
padding="max_length",
|
| 91 |
-
max_length=self.tokenizer.model_max_length,
|
| 92 |
-
truncation=True,
|
| 93 |
-
return_tensors="pt",
|
| 94 |
-
)
|
| 95 |
-
mask = text_inputs.attention_mask.bool() # [0]
|
| 96 |
-
|
| 97 |
-
text_encoder_output = self.text_encoder(text_inputs.input_ids.to(self.device))
|
| 98 |
-
text_encoder_hidden_states = text_encoder_output.last_hidden_state
|
| 99 |
-
text_encoder_concat = text_encoder_hidden_states[:, :mask.sum().item()]
|
| 100 |
-
self.text_encoder.to('cpu')
|
| 101 |
-
return text_encoder_concat
|
| 102 |
-
|
| 103 |
-
def run_binary(self, input_a, input_b, prior_type):
|
| 104 |
-
# Move pipeline to GPU
|
| 105 |
-
pipeline = self.priors_dict[prior_type]['pipeline']
|
| 106 |
-
pipeline.to('cuda')
|
| 107 |
-
self.image_encoder.to('cuda')
|
| 108 |
-
input_image_embeds, input_hidden_state = pops_utils.preprocess(input_a, input_b,
|
| 109 |
-
self.image_encoder,
|
| 110 |
-
pipeline.prior.clip_mean.detach(),
|
| 111 |
-
pipeline.prior.clip_std.detach())
|
| 112 |
-
|
| 113 |
-
negative_input_embeds = torch.zeros_like(input_image_embeds)
|
| 114 |
-
negative_hidden_states = torch.zeros_like(input_hidden_state)
|
| 115 |
-
|
| 116 |
-
guidance_scale = 1.0
|
| 117 |
-
if prior_type == 'texturing':
|
| 118 |
-
guidance_scale = 8.0
|
| 119 |
-
|
| 120 |
-
img_emb = pipeline(input_embeds=input_image_embeds, input_hidden_states=input_hidden_state,
|
| 121 |
-
negative_input_embeds=negative_input_embeds,
|
| 122 |
-
negative_input_hidden_states=negative_hidden_states,
|
| 123 |
-
num_inference_steps=25,
|
| 124 |
-
num_images_per_prompt=1,
|
| 125 |
-
guidance_scale=guidance_scale)
|
| 126 |
-
|
| 127 |
-
# Optional
|
| 128 |
-
if prior_type == 'scene':
|
| 129 |
-
# Scene is the closet to what avg represents for a background image so incorporate that as well
|
| 130 |
-
mean_emb = 0.5 * input_hidden_state[:, 0] + 0.5 * input_hidden_state[:, 1]
|
| 131 |
-
mean_emb = (mean_emb * pipeline.prior.clip_std) + pipeline.prior.clip_mean
|
| 132 |
-
alpha = 0.4
|
| 133 |
-
img_emb.image_embeds = (1 - alpha) * img_emb.image_embeds + alpha * mean_emb
|
| 134 |
-
|
| 135 |
-
# Move pipeline to CPU
|
| 136 |
-
pipeline.to('cpu')
|
| 137 |
-
self.image_encoder.to('cpu')
|
| 138 |
-
return img_emb
|
| 139 |
-
|
| 140 |
-
def run_instruct(self, input_a, text):
|
| 141 |
-
|
| 142 |
-
text_encodings = self.process_text(text)
|
| 143 |
-
|
| 144 |
-
# Move pipeline to GPU
|
| 145 |
-
instruct_pipeline = self.priors_dict['instruct']['pipeline']
|
| 146 |
-
instruct_pipeline.to('cuda')
|
| 147 |
-
self.image_encoder.to('cuda')
|
| 148 |
-
input_image_embeds, input_hidden_state = pops_utils.preprocess(input_a, None,
|
| 149 |
-
self.image_encoder,
|
| 150 |
-
instruct_pipeline.prior.clip_mean.detach(), instruct_pipeline.prior.clip_std.detach(),
|
| 151 |
-
concat_hidden_states=text_encodings)
|
| 152 |
-
|
| 153 |
-
negative_input_embeds = torch.zeros_like(input_image_embeds)
|
| 154 |
-
negative_hidden_states = torch.zeros_like(input_hidden_state)
|
| 155 |
-
img_emb = instruct_pipeline(input_embeds=input_image_embeds, input_hidden_states=input_hidden_state,
|
| 156 |
-
negative_input_embeds=negative_input_embeds,
|
| 157 |
-
negative_input_hidden_states=negative_hidden_states,
|
| 158 |
-
num_inference_steps=25,
|
| 159 |
-
num_images_per_prompt=1,
|
| 160 |
-
guidance_scale=1.0)
|
| 161 |
-
|
| 162 |
-
# Move pipeline to CPU
|
| 163 |
-
instruct_pipeline.to('cpu')
|
| 164 |
-
self.image_encoder.to('cpu')
|
| 165 |
-
return img_emb
|
| 166 |
-
|
| 167 |
-
def render(self, img_emb):
|
| 168 |
-
self.decoder.to('cuda')
|
| 169 |
-
images = self.decoder(image_embeds=img_emb.image_embeds, negative_image_embeds=img_emb.negative_image_embeds,
|
| 170 |
-
num_inference_steps=50, height=512,
|
| 171 |
-
width=512, guidance_scale=4).images
|
| 172 |
-
self.decoder.to('cpu')
|
| 173 |
-
return images[0]
|
| 174 |
-
|
| 175 |
-
def run_instruct_texture(self, image_object_path, text_instruct, image_texture_path):
|
| 176 |
-
# Process both inputs
|
| 177 |
-
image_object = self.process_image(image_object_path)
|
| 178 |
-
image_texture = self.process_image(image_texture_path)
|
| 179 |
-
|
| 180 |
-
if image_object is None:
|
| 181 |
-
raise gr.Error('Object image is required')
|
| 182 |
-
|
| 183 |
-
current_emb = None
|
| 184 |
-
|
| 185 |
-
if image_texture is None:
|
| 186 |
-
instruct_input = image_object
|
| 187 |
-
else:
|
| 188 |
-
# Run texturing
|
| 189 |
-
current_emb = self.run_binary(input_a=image_object, input_b=image_texture,prior_type='texturing')
|
| 190 |
-
instruct_input = current_emb.image_embeds
|
| 191 |
-
|
| 192 |
-
if text_instruct != '':
|
| 193 |
-
current_emb = self.run_instruct(input_a=instruct_input, text=text_instruct)
|
| 194 |
-
|
| 195 |
-
if current_emb is None:
|
| 196 |
-
raise gr.Error('At least one of the inputs is required')
|
| 197 |
-
|
| 198 |
-
# Render as image
|
| 199 |
-
image = self.render(current_emb)
|
| 200 |
-
|
| 201 |
-
return image
|
| 202 |
-
|
| 203 |
-
def run_texture_scene(self, image_object_path, image_texture_path, image_scene_path):
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from diffusers import PriorTransformer, UNet2DConditionModel, KandinskyV22Pipeline
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
+
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor, CLIPTokenizer, CLIPTextModelWithProjection
|
| 7 |
+
|
| 8 |
+
from model import pops_utils
|
| 9 |
+
from model.pipeline_pops import pOpsPipeline
|
| 10 |
+
|
| 11 |
+
kandinsky_prior_repo: str = 'kandinsky-community/kandinsky-2-2-prior'
|
| 12 |
+
kandinsky_decoder_repo: str = 'kandinsky-community/kandinsky-2-2-decoder'
|
| 13 |
+
prior_texture_repo: str = 'models/texturing/learned_prior.pth'
|
| 14 |
+
prior_instruct_repo: str = 'models/instruct/learned_prior.pth'
|
| 15 |
+
prior_scene_repo: str = 'models/scene/learned_prior.pth'
|
| 16 |
+
prior_repo = "pOpsPaper/operators"
|
| 17 |
+
|
| 18 |
+
# gpu = torch.device('cuda')
|
| 19 |
+
# cpu = torch.device('cpu')
|
| 20 |
+
|
| 21 |
+
class PopsPipelines:
|
| 22 |
+
def __init__(self):
|
| 23 |
+
weight_dtype = torch.float16
|
| 24 |
+
self.weight_dtype = weight_dtype
|
| 25 |
+
device = 'cpu' #torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 26 |
+
self.device = 'cuda' #device
|
| 27 |
+
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(kandinsky_prior_repo,
|
| 28 |
+
subfolder='image_encoder',
|
| 29 |
+
torch_dtype=weight_dtype).eval()
|
| 30 |
+
self.image_encoder.requires_grad_(False)
|
| 31 |
+
|
| 32 |
+
self.image_processor = CLIPImageProcessor.from_pretrained(kandinsky_prior_repo,
|
| 33 |
+
subfolder='image_processor')
|
| 34 |
+
|
| 35 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(kandinsky_prior_repo, subfolder='tokenizer')
|
| 36 |
+
self.text_encoder = CLIPTextModelWithProjection.from_pretrained(kandinsky_prior_repo,
|
| 37 |
+
subfolder='text_encoder',
|
| 38 |
+
torch_dtype=weight_dtype).eval().to(device)
|
| 39 |
+
|
| 40 |
+
# Load full model for vis
|
| 41 |
+
self.unet = UNet2DConditionModel.from_pretrained(kandinsky_decoder_repo,
|
| 42 |
+
subfolder='unet').to(torch.float16).to(device)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
self.decoder = KandinskyV22Pipeline.from_pretrained(kandinsky_decoder_repo, unet=self.unet,
|
| 46 |
+
torch_dtype=torch.float16)
|
| 47 |
+
self.decoder = self.decoder.to(device)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
self.priors_dict = {
|
| 51 |
+
'texturing':{'repo':prior_texture_repo},
|
| 52 |
+
'instruct': {'repo': prior_instruct_repo},
|
| 53 |
+
'scene': {'repo':prior_scene_repo}
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
for prior_type in self.priors_dict:
|
| 57 |
+
prior_path = self.priors_dict[prior_type]['repo']
|
| 58 |
+
prior = PriorTransformer.from_pretrained(
|
| 59 |
+
kandinsky_prior_repo, subfolder="prior"
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# Load from huggingface
|
| 63 |
+
prior_path = hf_hub_download(repo_id=prior_repo, filename=str(prior_path))
|
| 64 |
+
prior_state_dict = torch.load(prior_path, map_location=device)
|
| 65 |
+
prior.load_state_dict(prior_state_dict, strict=False)
|
| 66 |
+
|
| 67 |
+
prior.eval()
|
| 68 |
+
prior = prior.to(weight_dtype)
|
| 69 |
+
|
| 70 |
+
prior_pipeline = pOpsPipeline.from_pretrained(kandinsky_prior_repo,
|
| 71 |
+
prior=prior,
|
| 72 |
+
image_encoder=self.image_encoder,
|
| 73 |
+
torch_dtype=torch.float16)
|
| 74 |
+
|
| 75 |
+
self.priors_dict[prior_type]['pipeline'] = prior_pipeline
|
| 76 |
+
|
| 77 |
+
def process_image(self, input_path):
|
| 78 |
+
if input_path is None:
|
| 79 |
+
return None
|
| 80 |
+
image_pil = Image.open(input_path).convert("RGB").resize((512, 512))
|
| 81 |
+
image = torch.Tensor(self.image_processor(image_pil)['pixel_values'][0]).to(self.device).unsqueeze(0).to(
|
| 82 |
+
self.weight_dtype)
|
| 83 |
+
|
| 84 |
+
return image
|
| 85 |
+
|
| 86 |
+
def process_text(self, text):
|
| 87 |
+
self.text_encoder.to('cuda')
|
| 88 |
+
text_inputs = self.tokenizer(
|
| 89 |
+
text,
|
| 90 |
+
padding="max_length",
|
| 91 |
+
max_length=self.tokenizer.model_max_length,
|
| 92 |
+
truncation=True,
|
| 93 |
+
return_tensors="pt",
|
| 94 |
+
)
|
| 95 |
+
mask = text_inputs.attention_mask.bool() # [0]
|
| 96 |
+
|
| 97 |
+
text_encoder_output = self.text_encoder(text_inputs.input_ids.to(self.device))
|
| 98 |
+
text_encoder_hidden_states = text_encoder_output.last_hidden_state
|
| 99 |
+
text_encoder_concat = text_encoder_hidden_states[:, :mask.sum().item()]
|
| 100 |
+
self.text_encoder.to('cpu')
|
| 101 |
+
return text_encoder_concat
|
| 102 |
+
|
| 103 |
+
def run_binary(self, input_a, input_b, prior_type):
|
| 104 |
+
# Move pipeline to GPU
|
| 105 |
+
pipeline = self.priors_dict[prior_type]['pipeline']
|
| 106 |
+
pipeline.to('cuda')
|
| 107 |
+
self.image_encoder.to('cuda')
|
| 108 |
+
input_image_embeds, input_hidden_state = pops_utils.preprocess(input_a, input_b,
|
| 109 |
+
self.image_encoder,
|
| 110 |
+
pipeline.prior.clip_mean.detach(),
|
| 111 |
+
pipeline.prior.clip_std.detach())
|
| 112 |
+
|
| 113 |
+
negative_input_embeds = torch.zeros_like(input_image_embeds)
|
| 114 |
+
negative_hidden_states = torch.zeros_like(input_hidden_state)
|
| 115 |
+
|
| 116 |
+
guidance_scale = 1.0
|
| 117 |
+
if prior_type == 'texturing':
|
| 118 |
+
guidance_scale = 8.0
|
| 119 |
+
|
| 120 |
+
img_emb = pipeline(input_embeds=input_image_embeds, input_hidden_states=input_hidden_state,
|
| 121 |
+
negative_input_embeds=negative_input_embeds,
|
| 122 |
+
negative_input_hidden_states=negative_hidden_states,
|
| 123 |
+
num_inference_steps=25,
|
| 124 |
+
num_images_per_prompt=1,
|
| 125 |
+
guidance_scale=guidance_scale)
|
| 126 |
+
|
| 127 |
+
# Optional
|
| 128 |
+
if prior_type == 'scene':
|
| 129 |
+
# Scene is the closet to what avg represents for a background image so incorporate that as well
|
| 130 |
+
mean_emb = 0.5 * input_hidden_state[:, 0] + 0.5 * input_hidden_state[:, 1]
|
| 131 |
+
mean_emb = (mean_emb * pipeline.prior.clip_std) + pipeline.prior.clip_mean
|
| 132 |
+
alpha = 0.4
|
| 133 |
+
img_emb.image_embeds = (1 - alpha) * img_emb.image_embeds + alpha * mean_emb
|
| 134 |
+
|
| 135 |
+
# Move pipeline to CPU
|
| 136 |
+
pipeline.to('cpu')
|
| 137 |
+
self.image_encoder.to('cpu')
|
| 138 |
+
return img_emb
|
| 139 |
+
|
| 140 |
+
def run_instruct(self, input_a, text):
|
| 141 |
+
|
| 142 |
+
text_encodings = self.process_text(text)
|
| 143 |
+
|
| 144 |
+
# Move pipeline to GPU
|
| 145 |
+
instruct_pipeline = self.priors_dict['instruct']['pipeline']
|
| 146 |
+
instruct_pipeline.to('cuda')
|
| 147 |
+
self.image_encoder.to('cuda')
|
| 148 |
+
input_image_embeds, input_hidden_state = pops_utils.preprocess(input_a, None,
|
| 149 |
+
self.image_encoder,
|
| 150 |
+
instruct_pipeline.prior.clip_mean.detach(), instruct_pipeline.prior.clip_std.detach(),
|
| 151 |
+
concat_hidden_states=text_encodings)
|
| 152 |
+
|
| 153 |
+
negative_input_embeds = torch.zeros_like(input_image_embeds)
|
| 154 |
+
negative_hidden_states = torch.zeros_like(input_hidden_state)
|
| 155 |
+
img_emb = instruct_pipeline(input_embeds=input_image_embeds, input_hidden_states=input_hidden_state,
|
| 156 |
+
negative_input_embeds=negative_input_embeds,
|
| 157 |
+
negative_input_hidden_states=negative_hidden_states,
|
| 158 |
+
num_inference_steps=25,
|
| 159 |
+
num_images_per_prompt=1,
|
| 160 |
+
guidance_scale=1.0)
|
| 161 |
+
|
| 162 |
+
# Move pipeline to CPU
|
| 163 |
+
instruct_pipeline.to('cpu')
|
| 164 |
+
self.image_encoder.to('cpu')
|
| 165 |
+
return img_emb
|
| 166 |
+
|
| 167 |
+
def render(self, img_emb):
|
| 168 |
+
self.decoder.to('cuda')
|
| 169 |
+
images = self.decoder(image_embeds=img_emb.image_embeds, negative_image_embeds=img_emb.negative_image_embeds,
|
| 170 |
+
num_inference_steps=50, height=512,
|
| 171 |
+
width=512, guidance_scale=4).images
|
| 172 |
+
self.decoder.to('cpu')
|
| 173 |
+
return images[0]
|
| 174 |
+
|
| 175 |
+
def run_instruct_texture(self, image_object_path, text_instruct, image_texture_path):
|
| 176 |
+
# Process both inputs
|
| 177 |
+
image_object = self.process_image(image_object_path)
|
| 178 |
+
image_texture = self.process_image(image_texture_path)
|
| 179 |
+
|
| 180 |
+
if image_object is None:
|
| 181 |
+
raise gr.Error('Object image is required')
|
| 182 |
+
|
| 183 |
+
current_emb = None
|
| 184 |
+
|
| 185 |
+
if image_texture is None:
|
| 186 |
+
instruct_input = image_object
|
| 187 |
+
else:
|
| 188 |
+
# Run texturing
|
| 189 |
+
current_emb = self.run_binary(input_a=image_object, input_b=image_texture,prior_type='texturing')
|
| 190 |
+
instruct_input = current_emb.image_embeds
|
| 191 |
+
|
| 192 |
+
if text_instruct != '':
|
| 193 |
+
current_emb = self.run_instruct(input_a=instruct_input, text=text_instruct)
|
| 194 |
+
|
| 195 |
+
if current_emb is None:
|
| 196 |
+
raise gr.Error('At least one of the inputs is required')
|
| 197 |
+
|
| 198 |
+
# Render as image
|
| 199 |
+
image = self.render(current_emb)
|
| 200 |
+
|
| 201 |
+
return image
|
| 202 |
+
|
| 203 |
+
def run_texture_scene(self, image_object_path, image_texture_path, image_scene_path):
|
| 204 |
+
image_object = self.process_image(image_object_path)
|
| 205 |
+
image_texture = self.process_image(image_texture_path)
|
| 206 |
+
image_scene = self.process_image(image_scene_path)
|
| 207 |
+
|
| 208 |
+
if image_object is None:
|
| 209 |
+
raise gr.Error('Object image is required')
|
| 210 |
+
|
| 211 |
+
current_emb = None
|
| 212 |
+
|
| 213 |
+
# If both object and scene images are provided, run scene processing
|
| 214 |
+
if image_scene is not None:
|
| 215 |
+
current_emb = self.run_binary(input_a=image_object, input_b=image_scene, prior_type='scene')
|
| 216 |
+
scene_input = current_emb.image_embeds
|
| 217 |
+
else:
|
| 218 |
+
scene_input = image_object
|
| 219 |
+
|
| 220 |
+
# If a texture image is provided, apply texturing
|
| 221 |
+
if image_texture is not None:
|
| 222 |
+
current_emb = self.run_binary(input_a=scene_input, input_b=image_texture, prior_type='texturing')
|
| 223 |
+
|
| 224 |
+
if current_emb is None:
|
| 225 |
+
raise gr.Error('At least one of the images is required')
|
| 226 |
+
|
| 227 |
+
# Render the final image
|
| 228 |
+
image = self.render(current_emb)
|
| 229 |
+
|
| 230 |
+
return image
|
|
|