Spaces:
Build error
Build error
File size: 20,339 Bytes
5413412 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
#!/usr/bin/env python3
"""
Train reading and controlling probes for LLM attribute detection.
This script trains linear probes on different layers of a language model to detect
demographic attributes (age, gender, socioeconomic status, education level).
"""
import os
import sys
import argparse
import pickle
import time
from pathlib import Path
from typing import Dict, List, Tuple, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Subset
from transformers import AutoTokenizer, AutoModelForCausalLM
from tqdm.auto import tqdm
import sklearn.model_selection
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
import matplotlib.pyplot as plt
# Import custom modules
try:
from src.dataset import TextDataset
from src.probes import LinearProbeClassification
from src.train_test_utils import train, test
from src.losses import edl_mse_loss
except ImportError as e:
print(f"β ERROR: Failed to import required modules: {e}")
print("Please ensure all required modules are in the correct location.")
sys.exit(1)
class TrainerConfig:
"""Configuration for training probes."""
learning_rate = 1e-3
betas = (0.9, 0.95)
weight_decay = 0.1 # only applied on matmul weights
def __init__(self, **kwargs):
for k, v in kwargs.items():
setattr(self, k, v)
class ProbeTrainer:
"""Main class for training reading and controlling probes."""
def __init__(self, model_name: str = "meta-llama/Llama-2-13b-chat-hf",
device: str = "cuda", use_auth_token: bool = True):
"""
Initialize the probe trainer.
Args:
model_name: HuggingFace model name
device: Device to use for training
use_auth_token: Whether to use auth token for model download
"""
self.device = device
self.model_name = model_name
# Configuration flags
self.new_prompt_format = True
self.residual_stream = True
self.uncertainty = False
self.logistic = True
self.augmented = False
self.remove_last_ai_response = True
self.include_inst = True
self.one_hot = True
# Label mappings
self.label_mappings = {
"_age_": {
"child": 0,
"adolescent": 1,
"adult": 2,
"older adult": 3,
},
"_gender_": {
"male": 0,
"female": 1,
},
"_socioeco_": {
"low": 0,
"middle": 1,
"high": 2
},
"_education_": {
"someschool": 0,
"highschool": 1,
"collegemore": 2
}
}
self.prompt_translator = {
"_age_": "age",
"_gender_": "gender",
"_socioeco_": "socioeconomic status",
"_education_": "education level",
}
self.openai_dataset = {
"_age_": "data/dataset/openai_age_1/",
"_gender_": "data/dataset/openai_gender_1/",
"_education_": "data/dataset/openai_education_1/",
"_socioeco_": "data/dataset/openai_socioeconomic_1/",
}
# Dataset configurations
self.dataset_configs = [
("data/dataset/llama_age_1/", "_age_"),
("data/dataset/llama_gender_1/", "_gender_"),
("data/dataset/llama_socioeconomic_1/", "_socioeco_"),
("data/dataset/openai_education_1/", "_education_"),
]
# Initialize model and tokenizer
print(f"π Initializing ProbeTrainer with model: {model_name}")
self._initialize_model()
def _initialize_model(self):
"""Initialize the tokenizer and model."""
try:
print("π₯ Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
use_auth_token=True
)
print("β
Tokenizer loaded successfully")
print("π₯ Loading model...")
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
use_auth_token=True
)
if self.device == "cuda":
print("π§ Moving model to GPU and setting to half precision...")
self.model.half().cuda()
self.model.eval()
print("β
Model loaded and ready")
except Exception as e:
print(f"β ERROR: Failed to initialize model: {e}")
sys.exit(1)
def _get_additional_datasets(self, label_idf: str, directory: str) -> List[str]:
"""Get additional datasets for training."""
additional_dataset = []
if label_idf == "_education_":
additional_dataset = []
else:
# Replace _1/ with _2/ for the second dataset
additional_dataset = [
directory.replace("_1/", "_2/"),
self.openai_dataset[label_idf]
]
# Add extra datasets based on attribute type
if label_idf == "_gender_":
additional_dataset += [
"data/dataset/openai_gender_2/",
"data/dataset/openai_gender_3/",
"data/dataset/openai_gender_4",
]
elif label_idf == "_education_":
additional_dataset += [
"data/dataset/openai_education_three_classes_2/",
"data/dataset/openai_education_three_classes_3/"
]
elif label_idf == "_socioeco_":
additional_dataset += [
"data/dataset/openai_socioeconomic_2/"
]
elif label_idf == "_age_":
additional_dataset += [
"data/dataset/openai_age_2/"
]
return additional_dataset
def _create_dataset(self, directory: str, label_idf: str,
label_to_id: Dict, control_probe: bool = False) -> TextDataset:
"""Create a dataset for training."""
additional_datasets = self._get_additional_datasets(label_idf, directory)
print(f" π Creating dataset from {directory}")
print(f" π Additional datasets: {len(additional_datasets)} sources")
try:
dataset = TextDataset(
directory,
self.tokenizer,
self.model,
label_idf=label_idf,
label_to_id=label_to_id,
convert_to_llama2_format=True,
additional_datas=additional_datasets,
new_format=self.new_prompt_format,
control_probe=control_probe,
residual_stream=self.residual_stream,
if_augmented=self.augmented,
remove_last_ai_response=self.remove_last_ai_response,
include_inst=self.include_inst,
k=1,
one_hot=False,
last_tok_pos=-1
)
print(f" β
Dataset created with {len(dataset)} samples")
return dataset
except Exception as e:
print(f" β ERROR: Failed to create dataset: {e}")
raise
def _create_data_loaders(self, dataset: TextDataset) -> Tuple[DataLoader, DataLoader]:
"""Create train and test data loaders."""
train_size = int(0.8 * len(dataset))
test_size = len(dataset) - train_size
print(f" π Splitting dataset: {train_size} train, {test_size} test")
try:
train_idx, val_idx = sklearn.model_selection.train_test_split(
list(range(len(dataset))),
test_size=test_size,
train_size=train_size,
random_state=12345,
shuffle=True,
stratify=dataset.labels,
)
train_dataset = Subset(dataset, train_idx)
test_dataset = Subset(dataset, val_idx)
train_loader = DataLoader(
train_dataset,
shuffle=True,
pin_memory=True,
batch_size=200,
num_workers=1
)
test_loader = DataLoader(
test_dataset,
shuffle=False,
pin_memory=True,
batch_size=400,
num_workers=1
)
print(f" β
Data loaders created")
return train_loader, test_loader
except Exception as e:
print(f" β ERROR: Failed to create data loaders: {e}")
raise
def _train_probe_for_layer(self, train_loader: DataLoader, test_loader: DataLoader,
layer_num: int, num_classes: int, dict_name: str,
save_dir: str, max_epochs: int = 50) -> Tuple[float, float, float]:
"""Train a probe for a specific layer."""
trainer_config = TrainerConfig()
probe = LinearProbeClassification(
probe_class=num_classes,
device=self.device,
input_dim=5120,
logistic=self.logistic
)
optimizer, scheduler = probe.configure_optimizers(trainer_config)
if self.uncertainty:
loss_func = edl_mse_loss
else:
loss_func = nn.BCELoss()
best_acc = 0
final_test_acc = 0
final_train_acc = 0
for epoch in range(1, max_epochs + 1):
verbosity = (epoch == max_epochs)
# Training
if self.uncertainty:
train_results = train(
probe, self.device, train_loader, optimizer,
epoch, loss_func=loss_func, verbose_interval=None,
verbose=verbosity, layer_num=layer_num,
return_raw_outputs=True, epoch_num=epoch,
num_classes=num_classes
)
test_results = test(
probe, self.device, test_loader, loss_func=loss_func,
return_raw_outputs=True, verbose=verbosity,
layer_num=layer_num, scheduler=scheduler,
epoch_num=epoch, num_classes=num_classes
)
else:
train_results = train(
probe, self.device, train_loader, optimizer,
epoch, loss_func=loss_func, verbose_interval=None,
verbose=verbosity, layer_num=layer_num,
return_raw_outputs=True, one_hot=self.one_hot,
num_classes=num_classes
)
test_results = test(
probe, self.device, test_loader, loss_func=loss_func,
return_raw_outputs=True, verbose=verbosity,
layer_num=layer_num, scheduler=scheduler,
one_hot=self.one_hot, num_classes=num_classes
)
if test_results[1] > best_acc:
best_acc = test_results[1]
save_path = f"{save_dir}/{dict_name}_probe_at_layer_{layer_num}.pth"
torch.save(probe.state_dict(), save_path)
if epoch == max_epochs:
final_test_acc = test_results[1]
final_train_acc = train_results[1]
# Save final model
final_path = f"{save_dir}/{dict_name}_probe_at_layer_{layer_num}_final.pth"
torch.save(probe.state_dict(), final_path)
# Generate confusion matrix
if verbosity:
try:
cm = confusion_matrix(test_results[3], test_results[2])
cm_display = ConfusionMatrixDisplay(
cm,
display_labels=list(self.label_mappings[f"_{dict_name}_"].keys())
).plot()
plt.savefig(f"{save_dir}/{dict_name}_layer_{layer_num}_confusion.png")
plt.close()
except Exception as e:
print(f" β οΈ Warning: Could not generate confusion matrix: {e}")
return best_acc, final_test_acc, final_train_acc
def train_probes(self, probe_type: str = "reading", num_layers: int = 41):
"""
Train probes for all attributes and layers.
Args:
probe_type: Type of probe to train ("reading" or "controlling")
num_layers: Number of layers to train probes for
"""
print(f"\n{'='*80}")
print(f"π― Training {probe_type.upper()} PROBES")
print(f"{'='*80}\n")
# Create output directory
save_dir = f"probe_checkpoints/{probe_type}_probe"
Path(save_dir).mkdir(parents=True, exist_ok=True)
print(f"π Output directory: {save_dir}")
accuracy_dict = {}
control_probe = (probe_type == "controlling")
for directory, label_idf in self.dataset_configs:
dict_name = label_idf.strip("_")
label_to_id = self.label_mappings[label_idf]
print(f"\n{'-'*60}")
print(f"π·οΈ Processing: {self.prompt_translator[label_idf].upper()}")
print(f" Classes: {list(label_to_id.keys())}")
print(f"{'-'*60}")
try:
# Create dataset
dataset = self._create_dataset(
directory, label_idf, label_to_id, control_probe
)
# Create data loaders
train_loader, test_loader = self._create_data_loaders(dataset)
# Initialize accuracy tracking
accuracy_dict[dict_name] = []
accuracy_dict[dict_name + "_final"] = []
accuracy_dict[dict_name + "_train"] = []
accs = []
final_accs = []
train_accs = []
# Train probes for each layer
print(f"\n π Training probes for {num_layers} layers...")
for layer_num in tqdm(range(num_layers), desc=f" Layers for {dict_name}"):
try:
print(f"\n Layer {layer_num}:")
best_acc, final_test_acc, final_train_acc = self._train_probe_for_layer(
train_loader, test_loader, layer_num,
len(label_to_id), dict_name, save_dir
)
accs.append(best_acc)
final_accs.append(final_test_acc)
train_accs.append(final_train_acc)
print(f" π Best: {best_acc:.3f}, Final: {final_test_acc:.3f}, Train: {final_train_acc:.3f}")
except Exception as e:
print(f" β ERROR: Failed to train layer {layer_num}: {e}")
accs.append(0)
final_accs.append(0)
train_accs.append(0)
# Save accuracies
accuracy_dict[dict_name] = accs
accuracy_dict[dict_name + "_final"] = final_accs
accuracy_dict[dict_name + "_train"] = train_accs
# Save intermediate results
with open(f"{save_dir}_experiment.pkl", "wb") as outfile:
pickle.dump(accuracy_dict, outfile)
print(f" πΎ Saved results to {save_dir}_experiment.pkl")
# Clean up memory
del dataset, train_loader, test_loader
torch.cuda.empty_cache()
print(f" π§Ή Cleaned up memory")
except Exception as e:
print(f" β ERROR: Failed to process {dict_name}: {e}")
continue
print(f"\n{'='*80}")
print(f"β
COMPLETED {probe_type.upper()} PROBE TRAINING")
print(f"{'='*80}\n")
# Print summary
self._print_summary(accuracy_dict, probe_type)
return accuracy_dict
def _print_summary(self, accuracy_dict: Dict, probe_type: str):
"""Print a summary of training results."""
print(f"\nπ SUMMARY for {probe_type} probes:")
print("-" * 40)
for attribute in accuracy_dict:
if not attribute.endswith("_final") and not attribute.endswith("_train"):
best_accs = accuracy_dict[attribute]
if best_accs:
max_acc = max(best_accs)
best_layer = best_accs.index(max_acc)
avg_acc = sum(best_accs) / len(best_accs)
print(f" {attribute:12s}: Best={max_acc:.3f} (layer {best_layer}), Avg={avg_acc:.3f}")
def main():
"""Main entry point for the script."""
parser = argparse.ArgumentParser(description="Train reading and controlling probes for LLM attribute detection")
parser.add_argument("--probe-type", choices=["reading", "controlling", "both"], default="both",
help="Type of probes to train")
parser.add_argument("--model", default="meta-llama/Llama-2-13b-chat-hf",
help="HuggingFace model to use")
parser.add_argument("--device", default="cuda", choices=["cuda", "cpu"],
help="Device to use for training")
parser.add_argument("--num-layers", type=int, default=41,
help="Number of layers to train probes for")
parser.add_argument("--no-auth", action="store_true",
help="Don't use authentication token")
args = parser.parse_args()
print(f"""
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β LLM Probe Training System β
β β
β Model: {args.model:50s} β
β Device: {args.device:49s} β
β Probe Type: {args.probe_type:45s} β
β Layers: {args.num_layers:49d} β
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
""")
start_time = time.time()
try:
# Initialize trainer
trainer = ProbeTrainer(
model_name=args.model,
device=args.device,
use_auth_token=not args.no_auth
)
# Train probes
if args.probe_type == "both":
print("\nπ Training both reading and controlling probes...")
reading_results = trainer.train_probes("reading", args.num_layers)
controlling_results = trainer.train_probes("controlling", args.num_layers)
elif args.probe_type == "reading":
reading_results = trainer.train_probes("reading", args.num_layers)
else:
controlling_results = trainer.train_probes("controlling", args.num_layers)
elapsed_time = time.time() - start_time
print(f"\nβ±οΈ Total training time: {elapsed_time/60:.2f} minutes")
print("β
Training completed successfully!")
except KeyboardInterrupt:
print("\n\nβ οΈ Training interrupted by user")
sys.exit(1)
except Exception as e:
print(f"\nβ FATAL ERROR: {e}")
import traceback
traceback.print_exc()
sys.exit(1)
if __name__ == "__main__":
main() |