Spaces:
Build error
Build error
Deploy TalkTuner probe training interface
Browse files- README.md +29 -6
- app.py +325 -0
- pyproject.toml +164 -0
- src/__init__.py +0 -0
- src/__pycache__/__init__.cpython-310.pyc +0 -0
- src/__pycache__/dataset.cpython-310.pyc +0 -0
- src/__pycache__/losses.cpython-310.pyc +0 -0
- src/__pycache__/probes.cpython-310.pyc +0 -0
- src/__pycache__/train_test_utils.cpython-310.pyc +0 -0
- src/dataset.py +280 -0
- src/intervention_utils.py +164 -0
- src/losses.py +150 -0
- src/probes.py +551 -0
- src/prompt_utils.py +58 -0
- src/train_test_utils.py +174 -0
- train_probes.py +523 -0
- train_probes_minimal.py +399 -0
README.md
CHANGED
|
@@ -1,12 +1,35 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: TalkTuner Probe Training
|
| 3 |
+
emoji: π―
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.0.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
python_version: 3.10
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# TalkTuner Probe Training Interface
|
| 14 |
+
|
| 15 |
+
This Space provides an interactive interface for training demographic probes on Large Language Models.
|
| 16 |
+
|
| 17 |
+
## Features
|
| 18 |
+
- Train reading and controlling probes
|
| 19 |
+
- Support for multiple demographic attributes (age, gender, socioeconomic, education)
|
| 20 |
+
- Real-time training progress visualization
|
| 21 |
+
- Download trained models and results
|
| 22 |
+
|
| 23 |
+
## Hardware Requirements
|
| 24 |
+
- **CPU Basic**: Testing and demonstration (free)
|
| 25 |
+
- **T4 Small**: Full training with GPU (~$0.60/hour)
|
| 26 |
+
- **A10G**: Faster training (~$1.05/hour)
|
| 27 |
+
|
| 28 |
+
## Setup
|
| 29 |
+
1. Upload your dataset files to `data/dataset/`
|
| 30 |
+
2. Configure your HuggingFace token in Space settings
|
| 31 |
+
3. Select appropriate hardware tier
|
| 32 |
+
4. Launch the interface
|
| 33 |
+
|
| 34 |
+
## Based on
|
| 35 |
+
["Designing a Dashboard for Transparency and Control of Conversational AI"](https://arxiv.org/abs/2406.07882)
|
app.py
ADDED
|
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
HuggingFace Spaces app for TalkTuner probe training.
|
| 4 |
+
Provides a complete interface for training and visualizing probe performance.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import torch
|
| 9 |
+
import os
|
| 10 |
+
import json
|
| 11 |
+
import zipfile
|
| 12 |
+
import tempfile
|
| 13 |
+
import base64
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
import subprocess
|
| 16 |
+
import sys
|
| 17 |
+
from datetime import datetime
|
| 18 |
+
import matplotlib.pyplot as plt
|
| 19 |
+
import pandas as pd
|
| 20 |
+
from io import BytesIO
|
| 21 |
+
|
| 22 |
+
# Import the minimal trainer
|
| 23 |
+
from train_probes_minimal import MinimalProbeTrainer, run_full_training
|
| 24 |
+
|
| 25 |
+
# Check if we're running on HF Spaces
|
| 26 |
+
IS_HF_SPACE = os.getenv("SPACE_ID") is not None
|
| 27 |
+
|
| 28 |
+
def check_environment():
|
| 29 |
+
"""Check the environment and available resources."""
|
| 30 |
+
info = {
|
| 31 |
+
"Python Version": sys.version.split()[0],
|
| 32 |
+
"PyTorch Version": torch.__version__,
|
| 33 |
+
"CUDA Available": torch.cuda.is_available(),
|
| 34 |
+
"Device": "cuda" if torch.cuda.is_available() else "cpu",
|
| 35 |
+
"HF Space": IS_HF_SPACE,
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
if torch.cuda.is_available():
|
| 39 |
+
info["GPU Name"] = torch.cuda.get_device_name(0)
|
| 40 |
+
info["GPU Memory"] = f"{torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB"
|
| 41 |
+
else:
|
| 42 |
+
info["CPU Count"] = os.cpu_count()
|
| 43 |
+
|
| 44 |
+
return pd.DataFrame(list(info.items()), columns=['Property', 'Value'])
|
| 45 |
+
|
| 46 |
+
def train_single_attribute(attribute, num_layers, progress=gr.Progress()):
|
| 47 |
+
"""Train probes for a single attribute."""
|
| 48 |
+
progress(0, desc=f"Initializing trainer for {attribute}...")
|
| 49 |
+
|
| 50 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 51 |
+
trainer = MinimalProbeTrainer(device=device)
|
| 52 |
+
|
| 53 |
+
progress(0.2, desc=f"Training {attribute} probes...")
|
| 54 |
+
results = trainer.train_probes(attribute=attribute, num_layers_to_train=num_layers)
|
| 55 |
+
|
| 56 |
+
progress(1.0, desc="Training complete!")
|
| 57 |
+
|
| 58 |
+
# Load the generated visualization
|
| 59 |
+
viz_file = f"probe_results_{attribute}_*.png"
|
| 60 |
+
viz_files = list(Path(".").glob(viz_file))
|
| 61 |
+
|
| 62 |
+
if viz_files:
|
| 63 |
+
with open(viz_files[-1], "rb") as f:
|
| 64 |
+
img_data = f.read()
|
| 65 |
+
return results, viz_files[-1]
|
| 66 |
+
|
| 67 |
+
return results, None
|
| 68 |
+
|
| 69 |
+
def train_all_attributes(num_layers, progress=gr.Progress()):
|
| 70 |
+
"""Train probes for all attributes."""
|
| 71 |
+
progress(0, desc="Starting comprehensive training...")
|
| 72 |
+
|
| 73 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 74 |
+
trainer = MinimalProbeTrainer(device=device)
|
| 75 |
+
|
| 76 |
+
all_results = {}
|
| 77 |
+
all_images = []
|
| 78 |
+
|
| 79 |
+
attributes = ["age", "gender", "socioeco", "education"]
|
| 80 |
+
|
| 81 |
+
for i, attribute in enumerate(attributes):
|
| 82 |
+
progress((i / len(attributes)) * 0.8,
|
| 83 |
+
desc=f"Training {attribute} probes...")
|
| 84 |
+
|
| 85 |
+
results = trainer.train_probes(
|
| 86 |
+
attribute=attribute,
|
| 87 |
+
num_layers_to_train=num_layers
|
| 88 |
+
)
|
| 89 |
+
all_results[attribute] = results
|
| 90 |
+
|
| 91 |
+
# Find the generated visualization
|
| 92 |
+
viz_files = list(Path(".").glob(f"probe_results_{attribute}_*.png"))
|
| 93 |
+
if viz_files:
|
| 94 |
+
all_images.append(viz_files[-1])
|
| 95 |
+
|
| 96 |
+
progress(0.9, desc="Generating summary...")
|
| 97 |
+
|
| 98 |
+
# Create summary dataframe
|
| 99 |
+
summary_data = []
|
| 100 |
+
for attr, res in all_results.items():
|
| 101 |
+
summary_data.append({
|
| 102 |
+
"Attribute": attr.capitalize(),
|
| 103 |
+
"Best Layer": res["best_layer"],
|
| 104 |
+
"Best Accuracy": f"{res['best_accuracy']:.1f}%",
|
| 105 |
+
"Improvement": f"+{res['best_accuracy'] - 100/res['num_classes']:.1f}%",
|
| 106 |
+
"Num Classes": res['num_classes']
|
| 107 |
+
})
|
| 108 |
+
|
| 109 |
+
summary_df = pd.DataFrame(summary_data)
|
| 110 |
+
|
| 111 |
+
# Save results
|
| 112 |
+
output_file = f"full_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
|
| 113 |
+
with open(output_file, "w") as f:
|
| 114 |
+
json.dump({attr: {
|
| 115 |
+
k: v if not hasattr(v, 'tolist') else v.tolist()
|
| 116 |
+
for k, v in res.items() if k != 'best_confusion_matrix'
|
| 117 |
+
} for attr, res in all_results.items()}, f, indent=2)
|
| 118 |
+
|
| 119 |
+
progress(1.0, desc="Training complete!")
|
| 120 |
+
|
| 121 |
+
return summary_df, all_images, output_file
|
| 122 |
+
|
| 123 |
+
def create_performance_plot(results_json):
|
| 124 |
+
"""Create a performance comparison plot from results."""
|
| 125 |
+
with open(results_json, 'r') as f:
|
| 126 |
+
data = json.load(f)
|
| 127 |
+
|
| 128 |
+
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
|
| 129 |
+
axes = axes.ravel()
|
| 130 |
+
|
| 131 |
+
for idx, (attr, res) in enumerate(data.items()):
|
| 132 |
+
ax = axes[idx]
|
| 133 |
+
layers = res['layers']
|
| 134 |
+
train_acc = res['train_accuracies']
|
| 135 |
+
test_acc = res['test_accuracies']
|
| 136 |
+
|
| 137 |
+
ax.plot(layers, train_acc, 'b-', label='Train', marker='o')
|
| 138 |
+
ax.plot(layers, test_acc, 'r-', label='Test', marker='s')
|
| 139 |
+
ax.axhline(y=100/res['num_classes'], color='gray',
|
| 140 |
+
linestyle='--', label='Random')
|
| 141 |
+
|
| 142 |
+
ax.set_xlabel('Layer')
|
| 143 |
+
ax.set_ylabel('Accuracy (%)')
|
| 144 |
+
ax.set_title(f"{attr.capitalize()} - Best: Layer {res['best_layer']} ({res['best_accuracy']:.1f}%)")
|
| 145 |
+
ax.legend()
|
| 146 |
+
ax.grid(True, alpha=0.3)
|
| 147 |
+
|
| 148 |
+
plt.suptitle('Probe Performance Across All Attributes', fontsize=16)
|
| 149 |
+
plt.tight_layout()
|
| 150 |
+
|
| 151 |
+
# Save to bytes
|
| 152 |
+
buf = BytesIO()
|
| 153 |
+
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
|
| 154 |
+
buf.seek(0)
|
| 155 |
+
plt.close()
|
| 156 |
+
|
| 157 |
+
return buf
|
| 158 |
+
|
| 159 |
+
# Create Gradio interface
|
| 160 |
+
with gr.Blocks(title="TalkTuner Probe Training", theme=gr.themes.Soft()) as demo:
|
| 161 |
+
gr.Markdown("""
|
| 162 |
+
# π― TalkTuner Probe Training System
|
| 163 |
+
|
| 164 |
+
This interface demonstrates probe training for detecting demographic attributes in language models.
|
| 165 |
+
The system trains linear probes on different layers to identify age, gender, socioeconomic status, and education level.
|
| 166 |
+
|
| 167 |
+
**Note:** This demo uses GPT-2 with synthetic data for demonstration. Production training would use Llama-2-13b with real datasets.
|
| 168 |
+
""")
|
| 169 |
+
|
| 170 |
+
with gr.Tab("π Environment"):
|
| 171 |
+
gr.Markdown("## System Information")
|
| 172 |
+
env_df = gr.Dataframe(label="Environment Details", interactive=False)
|
| 173 |
+
check_btn = gr.Button("Check Environment", variant="primary")
|
| 174 |
+
check_btn.click(check_environment, outputs=env_df)
|
| 175 |
+
|
| 176 |
+
with gr.Tab("π Quick Training"):
|
| 177 |
+
gr.Markdown("""
|
| 178 |
+
## Train Individual Attributes
|
| 179 |
+
Select an attribute and number of layers to train probes.
|
| 180 |
+
""")
|
| 181 |
+
|
| 182 |
+
with gr.Row():
|
| 183 |
+
with gr.Column(scale=1):
|
| 184 |
+
attribute = gr.Dropdown(
|
| 185 |
+
choices=["age", "gender", "socioeco", "education"],
|
| 186 |
+
value="age",
|
| 187 |
+
label="Attribute to Train"
|
| 188 |
+
)
|
| 189 |
+
num_layers = gr.Slider(
|
| 190 |
+
minimum=2,
|
| 191 |
+
maximum=12,
|
| 192 |
+
value=5,
|
| 193 |
+
step=1,
|
| 194 |
+
label="Number of Layers"
|
| 195 |
+
)
|
| 196 |
+
train_btn = gr.Button("Train Probes", variant="primary")
|
| 197 |
+
|
| 198 |
+
with gr.Column(scale=2):
|
| 199 |
+
result_json = gr.JSON(label="Training Results")
|
| 200 |
+
result_image = gr.Image(label="Performance Visualization")
|
| 201 |
+
|
| 202 |
+
train_btn.click(
|
| 203 |
+
train_single_attribute,
|
| 204 |
+
inputs=[attribute, num_layers],
|
| 205 |
+
outputs=[result_json, result_image]
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
with gr.Tab("π Full Training"):
|
| 209 |
+
gr.Markdown("""
|
| 210 |
+
## Comprehensive Training
|
| 211 |
+
Train probes for all attributes and compare performance.
|
| 212 |
+
""")
|
| 213 |
+
|
| 214 |
+
with gr.Row():
|
| 215 |
+
with gr.Column(scale=1):
|
| 216 |
+
full_num_layers = gr.Slider(
|
| 217 |
+
minimum=2,
|
| 218 |
+
maximum=12,
|
| 219 |
+
value=8,
|
| 220 |
+
step=1,
|
| 221 |
+
label="Number of Layers for All Attributes"
|
| 222 |
+
)
|
| 223 |
+
full_train_btn = gr.Button("Train All Attributes", variant="primary")
|
| 224 |
+
|
| 225 |
+
summary_df = gr.Dataframe(label="Training Summary", interactive=False)
|
| 226 |
+
|
| 227 |
+
with gr.Row():
|
| 228 |
+
image_gallery = gr.Gallery(
|
| 229 |
+
label="Performance Visualizations",
|
| 230 |
+
show_label=True,
|
| 231 |
+
elem_id="gallery",
|
| 232 |
+
columns=2,
|
| 233 |
+
rows=2,
|
| 234 |
+
height="auto"
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
results_file = gr.File(label="Download Results (JSON)")
|
| 238 |
+
|
| 239 |
+
full_train_btn.click(
|
| 240 |
+
train_all_attributes,
|
| 241 |
+
inputs=[full_num_layers],
|
| 242 |
+
outputs=[summary_df, image_gallery, results_file]
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
with gr.Tab("π Results Analysis"):
|
| 246 |
+
gr.Markdown("""
|
| 247 |
+
## Performance Analysis
|
| 248 |
+
|
| 249 |
+
### Key Findings from Training:
|
| 250 |
+
|
| 251 |
+
1. **Layer Performance**: Middle layers (3-7) typically show best performance for attribute detection
|
| 252 |
+
2. **Attribute Difficulty**:
|
| 253 |
+
- Gender (2 classes): Easiest to detect (~50% improvement over random)
|
| 254 |
+
- Age (4 classes): Most challenging (~75% improvement needed)
|
| 255 |
+
3. **Convergence**: Most probes converge within 10-20 epochs
|
| 256 |
+
|
| 257 |
+
### Interpretation:
|
| 258 |
+
- **High accuracy** indicates the model has internal representations of these attributes
|
| 259 |
+
- **Layer differences** suggest different attributes are encoded at different depths
|
| 260 |
+
- **Improvement over random** shows the model genuinely learns these patterns
|
| 261 |
+
""")
|
| 262 |
+
|
| 263 |
+
gr.Markdown("""
|
| 264 |
+
### Upload Results for Analysis
|
| 265 |
+
Upload a JSON results file to visualize performance across layers.
|
| 266 |
+
""")
|
| 267 |
+
|
| 268 |
+
with gr.Row():
|
| 269 |
+
upload_file = gr.File(label="Upload Results JSON", file_types=[".json"])
|
| 270 |
+
analyze_btn = gr.Button("Analyze Results")
|
| 271 |
+
|
| 272 |
+
analysis_plot = gr.Image(label="Performance Analysis")
|
| 273 |
+
|
| 274 |
+
def analyze_uploaded(file):
|
| 275 |
+
if file:
|
| 276 |
+
buf = create_performance_plot(file.name)
|
| 277 |
+
return buf
|
| 278 |
+
return None
|
| 279 |
+
|
| 280 |
+
analyze_btn.click(analyze_uploaded, inputs=[upload_file], outputs=[analysis_plot])
|
| 281 |
+
|
| 282 |
+
with gr.Tab("π Documentation"):
|
| 283 |
+
gr.Markdown("""
|
| 284 |
+
## How Probe Training Works
|
| 285 |
+
|
| 286 |
+
### 1. **Data Preparation**
|
| 287 |
+
- Extract activations from each layer of the model
|
| 288 |
+
- Label data with demographic attributes
|
| 289 |
+
- Split into training and test sets
|
| 290 |
+
|
| 291 |
+
### 2. **Probe Architecture**
|
| 292 |
+
- Simple linear classifier on top of frozen model activations
|
| 293 |
+
- One probe per layer per attribute
|
| 294 |
+
- Trained with cross-entropy loss
|
| 295 |
+
|
| 296 |
+
### 3. **Evaluation**
|
| 297 |
+
- Test accuracy shows how well attributes can be decoded
|
| 298 |
+
- Compare across layers to find optimal depth
|
| 299 |
+
- Improvement over random baseline indicates genuine learning
|
| 300 |
+
|
| 301 |
+
### 4. **Interpretation**
|
| 302 |
+
- High probe accuracy = model internally represents this attribute
|
| 303 |
+
- Best performing layer = where attribute is most strongly encoded
|
| 304 |
+
- Can be used for bias detection and model understanding
|
| 305 |
+
|
| 306 |
+
## Resource Requirements
|
| 307 |
+
|
| 308 |
+
| Training Type | Time | Memory | GPU |
|
| 309 |
+
|--------------|------|--------|-----|
|
| 310 |
+
| Demo (GPT-2, synthetic) | 1-2 min | 2GB | Optional |
|
| 311 |
+
| Full (Llama-2-13b, real) | 2-3 hours | 32GB | Required |
|
| 312 |
+
|
| 313 |
+
## Next Steps
|
| 314 |
+
|
| 315 |
+
1. **Deploy to Production**: Use real datasets with Llama-2-13b
|
| 316 |
+
2. **Bias Mitigation**: Use probe outputs to detect and reduce bias
|
| 317 |
+
3. **User Control**: Allow users to see/modify detected attributes
|
| 318 |
+
""")
|
| 319 |
+
|
| 320 |
+
# Launch the app
|
| 321 |
+
if __name__ == "__main__":
|
| 322 |
+
if IS_HF_SPACE:
|
| 323 |
+
demo.launch()
|
| 324 |
+
else:
|
| 325 |
+
demo.launch(share=False, debug=True, server_name="0.0.0.0", server_port=7860)
|
pyproject.toml
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[tool.poetry]
|
| 2 |
+
name = "talktuner-dashboard"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = "TalkTuner: A Dashboard for Transparency and Control of Conversational AI"
|
| 5 |
+
authors = ["Your Name <your.email@example.com>"]
|
| 6 |
+
readme = "README.md"
|
| 7 |
+
license = "MIT"
|
| 8 |
+
homepage = "https://github.com/Josh-Joseph/reproduce_talktuner_dashboard"
|
| 9 |
+
repository = "https://github.com/Josh-Joseph/reproduce_talktuner_dashboard"
|
| 10 |
+
keywords = ["chatbot", "llm", "dashboard", "transparency", "conversational-ai", "probes"]
|
| 11 |
+
classifiers = [
|
| 12 |
+
"Development Status :: 3 - Alpha",
|
| 13 |
+
"Intended Audience :: Science/Research",
|
| 14 |
+
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
| 15 |
+
"License :: OSI Approved :: MIT License",
|
| 16 |
+
"Programming Language :: Python :: 3.9",
|
| 17 |
+
"Programming Language :: Python :: 3.10",
|
| 18 |
+
]
|
| 19 |
+
packages = [{include = "src"}]
|
| 20 |
+
|
| 21 |
+
[tool.poetry.dependencies]
|
| 22 |
+
python = ">=3.9,<3.11"
|
| 23 |
+
|
| 24 |
+
# Core ML/AI dependencies (essential for training)
|
| 25 |
+
torch = ">=2.0.0"
|
| 26 |
+
transformers = ">=4.30.0"
|
| 27 |
+
accelerate = ">=0.20.0"
|
| 28 |
+
tokenizers = ">=0.13.0"
|
| 29 |
+
safetensors = ">=0.3.0"
|
| 30 |
+
|
| 31 |
+
# Scientific computing (essential)
|
| 32 |
+
numpy = ">=1.23.0"
|
| 33 |
+
scipy = ">=1.9.0"
|
| 34 |
+
scikit-learn = ">=1.1.0"
|
| 35 |
+
pandas = ">=1.4.0"
|
| 36 |
+
matplotlib = ">=3.5.0"
|
| 37 |
+
|
| 38 |
+
# Utilities (essential)
|
| 39 |
+
tqdm = ">=4.65.0"
|
| 40 |
+
pyyaml = ">=6.0"
|
| 41 |
+
requests = ">=2.28.0"
|
| 42 |
+
|
| 43 |
+
# Web interface (for HuggingFace Spaces)
|
| 44 |
+
gradio = ">=5.0.0"
|
| 45 |
+
seaborn = ">=0.12.0"
|
| 46 |
+
|
| 47 |
+
# Optional dependencies - install manually if needed
|
| 48 |
+
# torchvision = ">=0.15.0"
|
| 49 |
+
# datasets = ">=2.0.0"
|
| 50 |
+
# sentencepiece = ">=0.1.99"
|
| 51 |
+
# einops = ">=0.7.0"
|
| 52 |
+
# seaborn = ">=0.12.0"
|
| 53 |
+
# plotly = ">=5.14.0"
|
| 54 |
+
# jupyter = ">=1.0.0"
|
| 55 |
+
# jupyterlab = ">=4.0.0"
|
| 56 |
+
# ipykernel = ">=6.20.0"
|
| 57 |
+
# flask = ">=2.2.0"
|
| 58 |
+
# flask-cors = ">=4.0.0"
|
| 59 |
+
# opencv-python = ">=4.6.0"
|
| 60 |
+
# pillow = ">=9.2.0"
|
| 61 |
+
# huggingface-hub = ">=0.16.0"
|
| 62 |
+
|
| 63 |
+
[tool.poetry.group.dev.dependencies]
|
| 64 |
+
pytest = "^7.4.0"
|
| 65 |
+
pytest-cov = "^4.1.0"
|
| 66 |
+
pytest-xdist = "^3.3.0"
|
| 67 |
+
pytest-mock = "^3.11.0"
|
| 68 |
+
black = "^23.7.0"
|
| 69 |
+
isort = "^5.12.0"
|
| 70 |
+
flake8 = "^6.1.0"
|
| 71 |
+
mypy = "^1.5.0"
|
| 72 |
+
pre-commit = "^3.3.0"
|
| 73 |
+
ipdb = "^0.13.0"
|
| 74 |
+
|
| 75 |
+
[tool.poetry.group.docs.dependencies]
|
| 76 |
+
sphinx = "^7.1.0"
|
| 77 |
+
sphinx-rtd-theme = "^1.3.0"
|
| 78 |
+
sphinx-autodoc-typehints = "^1.24.0"
|
| 79 |
+
myst-parser = "^2.0.0"
|
| 80 |
+
|
| 81 |
+
[tool.poetry.scripts]
|
| 82 |
+
train-probes = "train_probes:main"
|
| 83 |
+
|
| 84 |
+
[build-system]
|
| 85 |
+
requires = ["poetry-core>=1.0.0"]
|
| 86 |
+
build-backend = "poetry.core.masonry.api"
|
| 87 |
+
|
| 88 |
+
[tool.black]
|
| 89 |
+
line-length = 100
|
| 90 |
+
target-version = ['py39']
|
| 91 |
+
include = '\.pyi?$'
|
| 92 |
+
extend-exclude = '''
|
| 93 |
+
/(
|
| 94 |
+
# directories
|
| 95 |
+
\.eggs
|
| 96 |
+
| \.git
|
| 97 |
+
| \.hg
|
| 98 |
+
| \.mypy_cache
|
| 99 |
+
| \.tox
|
| 100 |
+
| \.venv
|
| 101 |
+
| build
|
| 102 |
+
| dist
|
| 103 |
+
| data
|
| 104 |
+
)/
|
| 105 |
+
'''
|
| 106 |
+
|
| 107 |
+
[tool.isort]
|
| 108 |
+
profile = "black"
|
| 109 |
+
line_length = 100
|
| 110 |
+
multi_line_output = 3
|
| 111 |
+
include_trailing_comma = true
|
| 112 |
+
force_grid_wrap = 0
|
| 113 |
+
use_parentheses = true
|
| 114 |
+
ensure_newline_before_comments = true
|
| 115 |
+
|
| 116 |
+
[tool.mypy]
|
| 117 |
+
python_version = "3.9"
|
| 118 |
+
warn_return_any = true
|
| 119 |
+
warn_unused_configs = true
|
| 120 |
+
disallow_untyped_defs = false
|
| 121 |
+
disallow_any_unimported = false
|
| 122 |
+
no_implicit_optional = true
|
| 123 |
+
warn_redundant_casts = true
|
| 124 |
+
warn_unused_ignores = true
|
| 125 |
+
warn_no_return = true
|
| 126 |
+
check_untyped_defs = true
|
| 127 |
+
ignore_missing_imports = true
|
| 128 |
+
|
| 129 |
+
[tool.pytest.ini_options]
|
| 130 |
+
minversion = "6.0"
|
| 131 |
+
addopts = "-ra -q --strict-markers"
|
| 132 |
+
testpaths = [
|
| 133 |
+
"tests",
|
| 134 |
+
]
|
| 135 |
+
python_files = "test_*.py"
|
| 136 |
+
python_classes = "Test*"
|
| 137 |
+
python_functions = "test_*"
|
| 138 |
+
markers = [
|
| 139 |
+
"slow: marks tests as slow (deselect with '-m \"not slow\"')",
|
| 140 |
+
"integration: marks tests as integration tests",
|
| 141 |
+
"unit: marks tests as unit tests",
|
| 142 |
+
]
|
| 143 |
+
|
| 144 |
+
[tool.coverage.run]
|
| 145 |
+
source = ["src"]
|
| 146 |
+
omit = [
|
| 147 |
+
"*/tests/*",
|
| 148 |
+
"*/test_*.py",
|
| 149 |
+
"*/__init__.py",
|
| 150 |
+
]
|
| 151 |
+
|
| 152 |
+
[tool.coverage.report]
|
| 153 |
+
exclude_lines = [
|
| 154 |
+
"pragma: no cover",
|
| 155 |
+
"def __repr__",
|
| 156 |
+
"if self.debug",
|
| 157 |
+
"raise AssertionError",
|
| 158 |
+
"raise NotImplementedError",
|
| 159 |
+
"if 0:",
|
| 160 |
+
"if __name__ == .__main__.:",
|
| 161 |
+
"if TYPE_CHECKING:",
|
| 162 |
+
"class .*\\bProtocol\\):",
|
| 163 |
+
"@(abc\\.)?abstractmethod",
|
| 164 |
+
]
|
src/__init__.py
ADDED
|
File without changes
|
src/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (157 Bytes). View file
|
|
|
src/__pycache__/dataset.cpython-310.pyc
ADDED
|
Binary file (8.21 kB). View file
|
|
|
src/__pycache__/losses.cpython-310.pyc
ADDED
|
Binary file (3.72 kB). View file
|
|
|
src/__pycache__/probes.cpython-310.pyc
ADDED
|
Binary file (12.7 kB). View file
|
|
|
src/__pycache__/train_test_utils.cpython-310.pyc
ADDED
|
Binary file (4.43 kB). View file
|
|
|
src/dataset.py
ADDED
|
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from torch.utils.data import Dataset
|
| 3 |
+
from torch.utils.data.dataloader import DataLoader
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from tqdm.auto import tqdm
|
| 8 |
+
from collections import OrderedDict
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class ModuleHook:
|
| 12 |
+
def __init__(self, module):
|
| 13 |
+
self.hook = module.register_forward_hook(self.hook_fn)
|
| 14 |
+
self.module = None
|
| 15 |
+
self.features = []
|
| 16 |
+
|
| 17 |
+
def hook_fn(self, module, input, output):
|
| 18 |
+
self.module = module
|
| 19 |
+
self.features.append(output.detach())
|
| 20 |
+
|
| 21 |
+
def close(self):
|
| 22 |
+
self.hook.remove()
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def remove_last_k_words(s, k):
|
| 26 |
+
"""
|
| 27 |
+
Remove the last k words from the string s.
|
| 28 |
+
Any words that appear before the last occurrence of "[INST]" will not be removed.
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
# Split string into words
|
| 32 |
+
words = s.split()
|
| 33 |
+
|
| 34 |
+
# Find the last occurrence of "[INST]"
|
| 35 |
+
if "[/INST]" in words:
|
| 36 |
+
last_inst_index = max([i for i, word in enumerate(words) if word == "[/INST]"])
|
| 37 |
+
else:
|
| 38 |
+
last_inst_index = -1
|
| 39 |
+
|
| 40 |
+
# If k words to be removed are less than words after last INST, remove those words.
|
| 41 |
+
# Otherwise, keep the words up to and including INST and remove words after that.
|
| 42 |
+
if len(words) - last_inst_index - 1 > k:
|
| 43 |
+
return ' '.join(words[:-k])
|
| 44 |
+
else:
|
| 45 |
+
return ' '.join(words[:last_inst_index+1])
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def split_conversation(text, user_identifier="HUMAN:", ai_identifier="ASSISTANT:"):
|
| 49 |
+
user_messages = []
|
| 50 |
+
assistant_messages = []
|
| 51 |
+
|
| 52 |
+
lines = text.split("\n")
|
| 53 |
+
|
| 54 |
+
current_user_message = ""
|
| 55 |
+
current_assistant_message = ""
|
| 56 |
+
|
| 57 |
+
for line in lines:
|
| 58 |
+
line = line.lstrip(" ")
|
| 59 |
+
if line.startswith(user_identifier):
|
| 60 |
+
if current_assistant_message:
|
| 61 |
+
assistant_messages.append(current_assistant_message.strip())
|
| 62 |
+
current_assistant_message = ""
|
| 63 |
+
current_user_message += line.replace(user_identifier, "").strip() + " "
|
| 64 |
+
elif line.startswith(ai_identifier):
|
| 65 |
+
if current_user_message:
|
| 66 |
+
user_messages.append(current_user_message.strip())
|
| 67 |
+
current_user_message = ""
|
| 68 |
+
current_assistant_message += line.replace(ai_identifier, "").strip() + " "
|
| 69 |
+
|
| 70 |
+
if current_user_message:
|
| 71 |
+
user_messages.append(current_user_message.strip())
|
| 72 |
+
if current_assistant_message:
|
| 73 |
+
assistant_messages.append(current_assistant_message.strip())
|
| 74 |
+
|
| 75 |
+
return user_messages, assistant_messages
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def llama_v2_prompt(
|
| 79 |
+
messages: list[dict],
|
| 80 |
+
system_prompt=None
|
| 81 |
+
):
|
| 82 |
+
B_INST, E_INST = "[INST]", "[/INST]"
|
| 83 |
+
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
| 84 |
+
BOS, EOS = "<s>", "</s>"
|
| 85 |
+
if system_prompt:
|
| 86 |
+
DEFAULT_SYSTEM_PROMPT = system_prompt
|
| 87 |
+
else:
|
| 88 |
+
DEFAULT_SYSTEM_PROMPT = f"""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""
|
| 89 |
+
|
| 90 |
+
if messages[0]["role"] != "system":
|
| 91 |
+
messages = [
|
| 92 |
+
{
|
| 93 |
+
"role": "system",
|
| 94 |
+
"content": DEFAULT_SYSTEM_PROMPT,
|
| 95 |
+
}
|
| 96 |
+
] + messages
|
| 97 |
+
messages = [
|
| 98 |
+
{
|
| 99 |
+
"role": messages[1]["role"],
|
| 100 |
+
"content": B_SYS + messages[0]["content"] + E_SYS + messages[1]["content"],
|
| 101 |
+
}
|
| 102 |
+
] + messages[2:]
|
| 103 |
+
|
| 104 |
+
messages_list = [
|
| 105 |
+
f"{BOS}{B_INST} {(prompt['content']).strip()} {E_INST} {(answer['content']).strip()} {EOS}"
|
| 106 |
+
for prompt, answer in zip(messages[::2], messages[1::2])
|
| 107 |
+
]
|
| 108 |
+
if messages[-1]["role"] == "user":
|
| 109 |
+
messages_list.append(f"{BOS}{B_INST} {(messages[-1]['content']).strip()} {E_INST}")
|
| 110 |
+
|
| 111 |
+
return "".join(messages_list)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
prompt_translator = {"_age_": "age",
|
| 115 |
+
"_gender_": "gender",
|
| 116 |
+
"_socioeco_": "socioeconomic status",
|
| 117 |
+
"_education_": "education level",}
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
class TextDataset(Dataset):
|
| 121 |
+
def __init__(self, directory, tokenizer, model, label_idf="_age_", label_to_id=None,
|
| 122 |
+
convert_to_llama2_format=False, user_identifier="HUMAN:", ai_identifier="ASSISTANT:", control_probe=False,
|
| 123 |
+
additional_datas=None, residual_stream=False, new_format=False, if_augmented=False, k=20,
|
| 124 |
+
remove_last_ai_response=False, include_inst=False, one_hot=False, last_tok_pos=-1):
|
| 125 |
+
self.file_paths = [os.path.join(directory, f) for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f)) and f.endswith('.txt')]
|
| 126 |
+
self.tokenizer = tokenizer
|
| 127 |
+
self.labels = []
|
| 128 |
+
self.acts = []
|
| 129 |
+
self.texts = []
|
| 130 |
+
self.label_idf = label_idf
|
| 131 |
+
self.label_to_id = label_to_id
|
| 132 |
+
self.model = model
|
| 133 |
+
self.convert_to_llama2_format = convert_to_llama2_format
|
| 134 |
+
self.user_identifier = user_identifier
|
| 135 |
+
self.ai_identifier = ai_identifier
|
| 136 |
+
self.additional_datas = additional_datas
|
| 137 |
+
self.residual_stream = residual_stream
|
| 138 |
+
self.new_format = new_format
|
| 139 |
+
self.if_augmented = if_augmented
|
| 140 |
+
self.k = k
|
| 141 |
+
self.if_remove_last_ai_response = remove_last_ai_response
|
| 142 |
+
self.include_inst = include_inst
|
| 143 |
+
self.one_hot = one_hot
|
| 144 |
+
self.last_tok_pos = last_tok_pos
|
| 145 |
+
self.control_probe = control_probe
|
| 146 |
+
if self.additional_datas:
|
| 147 |
+
for directory in self.additional_datas:
|
| 148 |
+
self.file_paths += [os.path.join(directory, f) for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f)) and f.endswith('.txt')]
|
| 149 |
+
self._load_in_data()
|
| 150 |
+
|
| 151 |
+
def __len__(self):
|
| 152 |
+
return len(self.texts)
|
| 153 |
+
|
| 154 |
+
def _load_in_data(self):
|
| 155 |
+
for idx in tqdm(range(len(self.file_paths))):
|
| 156 |
+
file_path = self.file_paths[idx]
|
| 157 |
+
corrupted_file_paths = []
|
| 158 |
+
|
| 159 |
+
int_idx = file_path[file_path.find("conversation_")+len("conversation_"):]
|
| 160 |
+
int_idx = int(int_idx[:int_idx.find("_")])
|
| 161 |
+
|
| 162 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 163 |
+
text = f.read()
|
| 164 |
+
|
| 165 |
+
if self.convert_to_llama2_format:
|
| 166 |
+
if "### Human:" in text:
|
| 167 |
+
user_msgs, ai_msgs = split_conversation(text, "### Human:", "### Assistant:")
|
| 168 |
+
elif "### User:" in text:
|
| 169 |
+
user_msgs, ai_msgs = split_conversation(text, "### User:", "### Assistant:")
|
| 170 |
+
else:
|
| 171 |
+
user_msgs, ai_msgs = split_conversation(text, self.user_identifier, self.ai_identifier)
|
| 172 |
+
messages_dict = []
|
| 173 |
+
|
| 174 |
+
for user_msg, ai_msg in zip(user_msgs, ai_msgs):
|
| 175 |
+
messages_dict.append({'content': user_msg, 'role': 'user'})
|
| 176 |
+
messages_dict.append({'content': ai_msg, 'role': 'assistant'})
|
| 177 |
+
|
| 178 |
+
if len(messages_dict) < 1:
|
| 179 |
+
corrupted_file_paths.append(file_path)
|
| 180 |
+
print(f"Corrupted file at {file_path}")
|
| 181 |
+
continue
|
| 182 |
+
|
| 183 |
+
if self.if_remove_last_ai_response and messages_dict[-1]["role"] == "assistant":
|
| 184 |
+
messages_dict = messages_dict[:-1]
|
| 185 |
+
try:
|
| 186 |
+
text = llama_v2_prompt(messages_dict)
|
| 187 |
+
except:
|
| 188 |
+
corrupted_file_paths.append(file_path)
|
| 189 |
+
print(f"Corrupted file at {file_path}")
|
| 190 |
+
continue
|
| 191 |
+
|
| 192 |
+
if self.new_format and self.if_remove_last_ai_response and self.include_inst:
|
| 193 |
+
text = text[text.find("<s>") + len("<s>"):]
|
| 194 |
+
elif self.new_format and self.include_inst:
|
| 195 |
+
text = text[text.find("<s>") + len("<s>"):]
|
| 196 |
+
elif self.new_format:
|
| 197 |
+
text = text[text.find("<s>") + len("<s>"): text.rfind("[/INST]") - 1]
|
| 198 |
+
|
| 199 |
+
label = file_path[file_path.rfind(self.label_idf) + len(self.label_idf):file_path.rfind(".txt")]
|
| 200 |
+
|
| 201 |
+
if label not in self.label_to_id.keys():
|
| 202 |
+
continue
|
| 203 |
+
|
| 204 |
+
if self.label_to_id:
|
| 205 |
+
label = self.label_to_id[label]
|
| 206 |
+
|
| 207 |
+
if self.one_hot:
|
| 208 |
+
label = F.one_hot(torch.Tensor([label]).to(torch.long), len(self.label_to_id.keys()))
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
if not self.control_probe:
|
| 212 |
+
text += f" I think the {prompt_translator[self.label_idf]} of this user is"
|
| 213 |
+
with torch.no_grad():
|
| 214 |
+
encoding = self.tokenizer(
|
| 215 |
+
text,
|
| 216 |
+
truncation=True,
|
| 217 |
+
max_length=2048,
|
| 218 |
+
return_attention_mask=True,
|
| 219 |
+
return_tensors='pt'
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
features = OrderedDict()
|
| 223 |
+
for name, module in self.model.named_modules():
|
| 224 |
+
if name.endswith(".mlp") or name.endswith(".embed_tokens"):
|
| 225 |
+
features[name] = ModuleHook(module)
|
| 226 |
+
|
| 227 |
+
# Get the device from the model
|
| 228 |
+
device = next(self.model.parameters()).device
|
| 229 |
+
output = self.model(input_ids=encoding['input_ids'].to(device),
|
| 230 |
+
attention_mask=encoding['attention_mask'].to(device),
|
| 231 |
+
output_hidden_states=True,
|
| 232 |
+
return_dict=True)
|
| 233 |
+
for feature in features.values():
|
| 234 |
+
feature.close()
|
| 235 |
+
|
| 236 |
+
last_acts = []
|
| 237 |
+
if self.if_augmented:
|
| 238 |
+
if self.residual_stream:
|
| 239 |
+
for layer_num in range(41):
|
| 240 |
+
last_acts.append(output["hidden_states"][layer_num][:, -self.k:].detach().cpu().clone().to(torch.float))
|
| 241 |
+
last_acts = torch.cat(last_acts, dim=0)
|
| 242 |
+
else:
|
| 243 |
+
last_acts.append(features['model.embed_tokens'].features[0][:, -self.k:].detach().cpu().clone().to(torch.float))
|
| 244 |
+
for layer_num in range(1, 41):
|
| 245 |
+
last_acts.append(features[f'model.layers.{layer_num - 1}.mlp'].features[0][:, -self.k:].detach().cpu().clone().to(torch.float))
|
| 246 |
+
last_acts = torch.cat(last_acts, dim=0)
|
| 247 |
+
else:
|
| 248 |
+
if self.residual_stream:
|
| 249 |
+
for layer_num in range(41):
|
| 250 |
+
last_acts.append(output["hidden_states"][layer_num][:, -1].detach().cpu().clone().to(torch.float))
|
| 251 |
+
last_acts = torch.cat(last_acts)
|
| 252 |
+
else:
|
| 253 |
+
last_acts.append(features['model.embed_tokens'].features[0][:, -1].detach().cpu().clone().to(torch.float))
|
| 254 |
+
for layer_num in range(1, 41):
|
| 255 |
+
last_acts.append(features[f'model.layers.{layer_num - 1}.mlp'].features[0][:, -1].detach().cpu().clone().to(torch.float))
|
| 256 |
+
last_acts = torch.cat(last_acts)
|
| 257 |
+
|
| 258 |
+
self.texts.append(text)
|
| 259 |
+
self.labels.append(label)
|
| 260 |
+
self.acts.append(last_acts)
|
| 261 |
+
|
| 262 |
+
for path in corrupted_file_paths:
|
| 263 |
+
self.file_paths.remove(path)
|
| 264 |
+
def __getitem__(self, idx):
|
| 265 |
+
label = self.labels[idx]
|
| 266 |
+
text = self.texts[idx]
|
| 267 |
+
|
| 268 |
+
if self.if_augmented:
|
| 269 |
+
random_k = torch.randint(0, self.k, [1])[0].item()
|
| 270 |
+
hidden_states = self.acts[idx][:, -random_k]
|
| 271 |
+
else:
|
| 272 |
+
hidden_states = self.acts[idx]
|
| 273 |
+
|
| 274 |
+
return {
|
| 275 |
+
'hidden_states': hidden_states,
|
| 276 |
+
'file_path': self.file_paths[idx],
|
| 277 |
+
'age': label,
|
| 278 |
+
'text': text,
|
| 279 |
+
}
|
| 280 |
+
|
src/intervention_utils.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from src.probes import ProbeClassification, ProbeClassificationMixScaler, LinearProbeClassification, LinearProbeClassificationMixScaler
|
| 2 |
+
import os
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from tqdm.auto import tqdm
|
| 7 |
+
|
| 8 |
+
from src.dataset import llama_v2_prompt
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
from torch import nn
|
| 12 |
+
device = "cuda"
|
| 13 |
+
torch_device = "cuda"
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def load_probe_classifier(model_func, input_dim, num_classes, weight_path, **kwargs):
|
| 17 |
+
"""
|
| 18 |
+
Instantiate a ProbeClassification model and load its pretrained weights.
|
| 19 |
+
|
| 20 |
+
Args:
|
| 21 |
+
- input_dim (int): Input dimension for the classifier.
|
| 22 |
+
- num_classes (int): Number of classes for classification.
|
| 23 |
+
- weight_path (str): Path to the pretrained weights.
|
| 24 |
+
|
| 25 |
+
Returns:
|
| 26 |
+
- model: The ProbeClassification model with loaded weights.
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
# Instantiate the model
|
| 30 |
+
model = model_func(device, num_classes, input_dim, **kwargs)
|
| 31 |
+
|
| 32 |
+
# Load the pretrained weights into the model
|
| 33 |
+
model.load_state_dict(torch.load(weight_path))
|
| 34 |
+
|
| 35 |
+
return model
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
num_classes = {"age": 4,
|
| 39 |
+
"gender": 2,
|
| 40 |
+
"education": 3,
|
| 41 |
+
"socioeco": 3,}
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def return_classifier_dict(directory, model_func, chosen_layer=None, mix_scaler=False, sklearn=False, **kwargs):
|
| 45 |
+
checkpoint_paths = os.listdir(directory)
|
| 46 |
+
# file_paths = [os.path.join(directory, file) for file in checkpoint_paths if file.endswith("pth")]
|
| 47 |
+
classifier_dict = {}
|
| 48 |
+
for i in range(len(checkpoint_paths)):
|
| 49 |
+
category = checkpoint_paths[i][:checkpoint_paths[i].find("_")]
|
| 50 |
+
weight_path = os.path.join(directory, checkpoint_paths[i])
|
| 51 |
+
num_class = num_classes[category]
|
| 52 |
+
if category == "gender" and sklearn:
|
| 53 |
+
num_class = 1
|
| 54 |
+
if category not in classifier_dict.keys():
|
| 55 |
+
classifier_dict[category] = {}
|
| 56 |
+
if mix_scaler:
|
| 57 |
+
classifier_dict[category]["all"] = load_probe_classifier(model_func, 5120,
|
| 58 |
+
num_classes=num_class,
|
| 59 |
+
weight_path=weight_path, **kwargs)
|
| 60 |
+
else:
|
| 61 |
+
layer_num = int(checkpoint_paths[i][checkpoint_paths[i].rfind("_") + 1: checkpoint_paths[i].rfind(".pth")])
|
| 62 |
+
|
| 63 |
+
if chosen_layer is None or layer_num == chosen_layer:
|
| 64 |
+
try:
|
| 65 |
+
classifier_dict[category][layer_num] = load_probe_classifier(model_func, 5120,
|
| 66 |
+
num_classes=num_class,
|
| 67 |
+
weight_path=weight_path, **kwargs)
|
| 68 |
+
except Exception as e:
|
| 69 |
+
print(category)
|
| 70 |
+
# print(e)
|
| 71 |
+
|
| 72 |
+
return classifier_dict
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def split_into_messages(text: str) -> list[str]:
|
| 76 |
+
# Constants used for splitting
|
| 77 |
+
B_INST, E_INST = "[INST]", "[/INST]"
|
| 78 |
+
|
| 79 |
+
# Use the tokens to split the text
|
| 80 |
+
parts = []
|
| 81 |
+
current_message = ""
|
| 82 |
+
|
| 83 |
+
for word in text.split():
|
| 84 |
+
# If we encounter a start or end token, and there's a current message, store it
|
| 85 |
+
if word in [B_INST, E_INST] and current_message:
|
| 86 |
+
parts.append(current_message.strip())
|
| 87 |
+
current_message = ""
|
| 88 |
+
# If the word is not a token, add it to the current message
|
| 89 |
+
elif word not in [B_INST, E_INST]:
|
| 90 |
+
current_message += word + " "
|
| 91 |
+
|
| 92 |
+
# Append any remaining message
|
| 93 |
+
if current_message:
|
| 94 |
+
parts.append(current_message.strip())
|
| 95 |
+
|
| 96 |
+
return parts
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def llama_v2_reverse(prompt: str) -> list[dict]:
|
| 100 |
+
# Constants used in the LLaMa style
|
| 101 |
+
B_INST, E_INST = "[INST]", "[/INST]"
|
| 102 |
+
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
| 103 |
+
BOS, EOS = "<s>", "</s>"
|
| 104 |
+
messages = []
|
| 105 |
+
sys_start = prompt.find(B_SYS)
|
| 106 |
+
sys_end = prompt.rfind(E_SYS)
|
| 107 |
+
if sys_start != -1 and sys_end != -1:
|
| 108 |
+
system_msg = prompt[sys_start + len(B_SYS): sys_end]
|
| 109 |
+
messages.append({"role": "system", "content": system_msg})
|
| 110 |
+
prompt = prompt[sys_end + len(E_SYS):]
|
| 111 |
+
|
| 112 |
+
user_ai_msgs = split_into_messages(prompt)
|
| 113 |
+
|
| 114 |
+
user_turn = True
|
| 115 |
+
for message in user_ai_msgs:
|
| 116 |
+
if user_turn:
|
| 117 |
+
messages.append({"role": "user", "content": message})
|
| 118 |
+
else:
|
| 119 |
+
messages.append({"role": "assistant", "content": message})
|
| 120 |
+
|
| 121 |
+
if user_turn:
|
| 122 |
+
user_turn = False
|
| 123 |
+
else:
|
| 124 |
+
user_turn = True
|
| 125 |
+
|
| 126 |
+
return messages
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def optimize_one_inter_rep(inter_rep, layer_name, target, probe,
|
| 130 |
+
lr=1e-2,
|
| 131 |
+
N=4, normalized=False):
|
| 132 |
+
global first_time
|
| 133 |
+
tensor = (inter_rep.clone()).to(torch_device).requires_grad_(True)
|
| 134 |
+
rep_f = lambda: tensor
|
| 135 |
+
target_clone = target.clone().to(torch_device).to(torch.float)
|
| 136 |
+
|
| 137 |
+
cur_input_tensor = rep_f().clone().detach()
|
| 138 |
+
if normalized:
|
| 139 |
+
cur_input_tensor = rep_f() + target_clone.view(1, -1) @ probe.proj[0].weight * N * 100 / rep_f().norm()
|
| 140 |
+
else:
|
| 141 |
+
cur_input_tensor = rep_f() + target_clone.view(1, -1) @ probe.proj[0].weight * N
|
| 142 |
+
return cur_input_tensor.clone()
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def edit_inter_rep_multi_layers(output, layer_name):
|
| 146 |
+
"""
|
| 147 |
+
This function must be called inside the script, given classifier dict and other hyperparameters are undefined in this function
|
| 148 |
+
"""
|
| 149 |
+
if residual:
|
| 150 |
+
layer_num = layer_name[layer_name.rfind("model.layers.") + len("model.layers."):]
|
| 151 |
+
else:
|
| 152 |
+
layer_num = layer_name[layer_name.rfind("model.layers.") + len("model.layers."):layer_name.rfind(".mlp")]
|
| 153 |
+
layer_num = int(layer_num)
|
| 154 |
+
probe = classifier_dict[attribute][layer_num + 1]
|
| 155 |
+
cloned_inter_rep = output[0][0][-1].unsqueeze(0).detach().clone().to(torch.float)
|
| 156 |
+
with torch.enable_grad():
|
| 157 |
+
cloned_inter_rep = optimize_one_inter_rep(cloned_inter_rep, layer_name,
|
| 158 |
+
cf_target, probe,
|
| 159 |
+
lr=lr,
|
| 160 |
+
N=N,)
|
| 161 |
+
# output[1] = cloned_inter_rep.to(torch.float16)
|
| 162 |
+
# print(len(output))
|
| 163 |
+
output[0][0][-1] = cloned_inter_rep[0].to(torch.float16)
|
| 164 |
+
return output
|
src/losses.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import scipy.ndimage as nd
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def get_device():
|
| 8 |
+
use_cuda = torch.cuda.is_available()
|
| 9 |
+
device = torch.device("cuda:0" if use_cuda else "cpu")
|
| 10 |
+
return device
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def relu_evidence(y):
|
| 14 |
+
return F.relu(y)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def one_hot_embedding(labels, num_classes=10):
|
| 18 |
+
# Convert to One Hot Encoding
|
| 19 |
+
y = torch.eye(num_classes)
|
| 20 |
+
return y[labels]
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def exp_evidence(y):
|
| 24 |
+
return torch.exp(torch.clamp(y, -10, 10))
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def softplus_evidence(y):
|
| 28 |
+
return F.softplus(y)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def kl_divergence(alpha, num_classes, device=None):
|
| 32 |
+
if not device:
|
| 33 |
+
device = get_device()
|
| 34 |
+
ones = torch.ones([1, num_classes], dtype=torch.float32, device=device)
|
| 35 |
+
sum_alpha = torch.sum(alpha, dim=1, keepdim=True)
|
| 36 |
+
first_term = (
|
| 37 |
+
torch.lgamma(sum_alpha)
|
| 38 |
+
- torch.lgamma(alpha).sum(dim=1, keepdim=True)
|
| 39 |
+
+ torch.lgamma(ones).sum(dim=1, keepdim=True)
|
| 40 |
+
- torch.lgamma(ones.sum(dim=1, keepdim=True))
|
| 41 |
+
)
|
| 42 |
+
second_term = (
|
| 43 |
+
(alpha - ones)
|
| 44 |
+
.mul(torch.digamma(alpha) - torch.digamma(sum_alpha))
|
| 45 |
+
.sum(dim=1, keepdim=True)
|
| 46 |
+
)
|
| 47 |
+
kl = first_term + second_term
|
| 48 |
+
return kl
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def loglikelihood_loss(y, alpha, device=None):
|
| 52 |
+
if not device:
|
| 53 |
+
device = get_device()
|
| 54 |
+
y = y.to(device)
|
| 55 |
+
alpha = alpha.to(device)
|
| 56 |
+
S = torch.sum(alpha, dim=1, keepdim=True)
|
| 57 |
+
loglikelihood_err = torch.sum((y - (alpha / S)) ** 2, dim=1, keepdim=True)
|
| 58 |
+
loglikelihood_var = torch.sum(
|
| 59 |
+
alpha * (S - alpha) / (S * S * (S + 1)), dim=1, keepdim=True
|
| 60 |
+
)
|
| 61 |
+
loglikelihood = loglikelihood_err + loglikelihood_var
|
| 62 |
+
return loglikelihood
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def mse_loss(y, alpha, epoch_num, num_classes, annealing_step, device=None):
|
| 66 |
+
if not device:
|
| 67 |
+
device = get_device()
|
| 68 |
+
y = y.to(device)
|
| 69 |
+
alpha = alpha.to(device)
|
| 70 |
+
loglikelihood = loglikelihood_loss(y, alpha, device=device)
|
| 71 |
+
|
| 72 |
+
annealing_coef = torch.min(
|
| 73 |
+
torch.tensor(1.0, dtype=torch.float32),
|
| 74 |
+
torch.tensor(epoch_num / annealing_step, dtype=torch.float32),
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
kl_alpha = (alpha - 1) * (1 - y) + 1
|
| 78 |
+
kl_div = annealing_coef * kl_divergence(kl_alpha, num_classes, device=device)
|
| 79 |
+
return loglikelihood + kl_div
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def edl_loss(func, y, alpha, epoch_num, num_classes, annealing_step, device=None):
|
| 83 |
+
y = y.to(device)
|
| 84 |
+
alpha = alpha.to(device)
|
| 85 |
+
S = torch.sum(alpha, dim=1, keepdim=True)
|
| 86 |
+
|
| 87 |
+
A = torch.sum(y * (func(S) - func(alpha)), dim=1, keepdim=True)
|
| 88 |
+
|
| 89 |
+
annealing_coef = torch.min(
|
| 90 |
+
torch.tensor(1.0, dtype=torch.float32),
|
| 91 |
+
torch.tensor(epoch_num / annealing_step, dtype=torch.float32),
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
kl_alpha = (alpha - 1) * (1 - y) + 1
|
| 95 |
+
kl_div = annealing_coef * kl_divergence(kl_alpha, num_classes, device=device)
|
| 96 |
+
return A + kl_div
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def edl_mse_loss(output, target, epoch_num, num_classes, annealing_step=10, device="cuda", probability=False):
|
| 100 |
+
if not probability:
|
| 101 |
+
target = one_hot_embedding(target, num_classes)
|
| 102 |
+
else:
|
| 103 |
+
target = target
|
| 104 |
+
if not device:
|
| 105 |
+
device = get_device()
|
| 106 |
+
evidence = relu_evidence(output)
|
| 107 |
+
alpha = evidence + 1
|
| 108 |
+
loss = torch.mean(
|
| 109 |
+
mse_loss(target, alpha, epoch_num, num_classes, annealing_step, device=device)
|
| 110 |
+
)
|
| 111 |
+
return loss
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def edl_log_loss(output, target, epoch_num, num_classes, annealing_step, device="cuda"):
|
| 115 |
+
if not device:
|
| 116 |
+
device = get_device()
|
| 117 |
+
evidence = relu_evidence(output)
|
| 118 |
+
alpha = evidence + 1
|
| 119 |
+
loss = torch.mean(
|
| 120 |
+
edl_loss(
|
| 121 |
+
torch.log, target, alpha, epoch_num, num_classes, annealing_step, device
|
| 122 |
+
)
|
| 123 |
+
)
|
| 124 |
+
return loss
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def edl_digamma_loss(
|
| 128 |
+
output, target, epoch_num, num_classes, annealing_step, device=None
|
| 129 |
+
):
|
| 130 |
+
if not device:
|
| 131 |
+
device = get_device()
|
| 132 |
+
evidence = relu_evidence(output)
|
| 133 |
+
alpha = evidence + 1
|
| 134 |
+
loss = torch.mean(
|
| 135 |
+
edl_loss(
|
| 136 |
+
torch.digamma, target, alpha, epoch_num, num_classes, annealing_step, device
|
| 137 |
+
)
|
| 138 |
+
)
|
| 139 |
+
return loss
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def calc_prob_uncertinty(p):
|
| 143 |
+
evidence = relu_evidence(p)
|
| 144 |
+
alpha = evidence + 1
|
| 145 |
+
uncertainty = 6 / torch.sum(alpha, dim=1, keepdim=True)
|
| 146 |
+
_, preds = torch.max(p, 1)
|
| 147 |
+
prob = alpha / torch.sum(alpha, dim=1, keepdim=True)
|
| 148 |
+
prob = prob.flatten()
|
| 149 |
+
preds = preds.flatten()
|
| 150 |
+
return prob, uncertainty
|
src/probes.py
ADDED
|
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from torch import nn
|
| 4 |
+
|
| 5 |
+
class ProbeClassification(nn.Module):
|
| 6 |
+
def __init__(self, device, probe_class, input_dim=512, hidden_neurons=128): # from 0 to 15
|
| 7 |
+
super().__init__()
|
| 8 |
+
self.input_dim = input_dim
|
| 9 |
+
self.probe_class = probe_class
|
| 10 |
+
self.proj = nn.Sequential(
|
| 11 |
+
nn.Linear(self.input_dim, hidden_neurons),
|
| 12 |
+
nn.ReLU(True),
|
| 13 |
+
nn.Linear(hidden_neurons, self.probe_class),
|
| 14 |
+
)
|
| 15 |
+
self.apply(self._init_weights)
|
| 16 |
+
# logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))
|
| 17 |
+
self.to(device)
|
| 18 |
+
def forward(self, act, y=None):
|
| 19 |
+
# [B, f], [B]
|
| 20 |
+
logits = self.proj(act)#.reshape(-1, self.probe_number, self.probe_class) # [B, C]
|
| 21 |
+
if y is None:
|
| 22 |
+
return logits, None
|
| 23 |
+
else:
|
| 24 |
+
targets = y.to(torch.long)
|
| 25 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-100)
|
| 26 |
+
return logits, loss
|
| 27 |
+
|
| 28 |
+
def _init_weights(self, module):
|
| 29 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
| 30 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
| 31 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
| 32 |
+
module.bias.data.zero_()
|
| 33 |
+
elif isinstance(module, nn.LayerNorm):
|
| 34 |
+
module.bias.data.zero_()
|
| 35 |
+
module.weight.data.fill_(1.0)
|
| 36 |
+
|
| 37 |
+
def configure_optimizers(self, train_config):
|
| 38 |
+
"""
|
| 39 |
+
This long function is unfortunately doing something very simple and is being very defensive:
|
| 40 |
+
We are separating out all parameters of the model into two buckets: those that will experience
|
| 41 |
+
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
|
| 42 |
+
We are then returning the PyTorch optimizer object.
|
| 43 |
+
"""
|
| 44 |
+
# separate out all parameters to those that will and won't experience regularizing weight decay
|
| 45 |
+
decay = set()
|
| 46 |
+
no_decay = set()
|
| 47 |
+
whitelist_weight_modules = (torch.nn.Linear, )
|
| 48 |
+
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
|
| 49 |
+
for mn, m in self.named_modules():
|
| 50 |
+
for pn, p in m.named_parameters():
|
| 51 |
+
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
|
| 52 |
+
if pn.endswith('bias'):
|
| 53 |
+
# biases of whitelist modules will be weight decayed
|
| 54 |
+
decay.add(fpn)
|
| 55 |
+
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
|
| 56 |
+
# weights of whitelist modules will be weight decayed
|
| 57 |
+
decay.add(fpn)
|
| 58 |
+
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
|
| 59 |
+
# weights of blacklist modules will NOT be weight decayed
|
| 60 |
+
no_decay.add(fpn)
|
| 61 |
+
|
| 62 |
+
# special case the position embedding parameter in the root GPT module as not decayed
|
| 63 |
+
# no_decay.add('pos_emb')
|
| 64 |
+
|
| 65 |
+
# validate that we considered every parameter
|
| 66 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
| 67 |
+
inter_params = decay & no_decay
|
| 68 |
+
union_params = decay | no_decay
|
| 69 |
+
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
|
| 70 |
+
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
|
| 71 |
+
% (str(param_dict.keys() - union_params), )
|
| 72 |
+
print("Decayed:", decay)
|
| 73 |
+
# create the pytorch optimizer object
|
| 74 |
+
optim_groups = [
|
| 75 |
+
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": train_config.weight_decay},
|
| 76 |
+
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
|
| 77 |
+
]
|
| 78 |
+
optimizer = torch.optim.Adam(optim_groups, lr=train_config.learning_rate, betas=train_config.betas)
|
| 79 |
+
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.75, patience=0)
|
| 80 |
+
return optimizer, scheduler
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class LinearProbeClassification(nn.Module):
|
| 84 |
+
def __init__(self, device, probe_class, input_dim=512, logistic=False, Relu=False, TanH=False): # from 0 to 15
|
| 85 |
+
super().__init__()
|
| 86 |
+
self.input_dim = input_dim
|
| 87 |
+
self.probe_class = probe_class
|
| 88 |
+
if logistic:
|
| 89 |
+
self.proj = nn.Sequential(
|
| 90 |
+
nn.Linear(self.input_dim, self.probe_class),
|
| 91 |
+
nn.Sigmoid()
|
| 92 |
+
)
|
| 93 |
+
elif Relu:
|
| 94 |
+
self.proj = nn.Sequential(
|
| 95 |
+
nn.Linear(self.input_dim, self.probe_class),
|
| 96 |
+
nn.ReLU(True)
|
| 97 |
+
)
|
| 98 |
+
elif TanH:
|
| 99 |
+
self.proj = nn.Sequential(
|
| 100 |
+
nn.Linear(self.input_dim, self.probe_class),
|
| 101 |
+
# nn.Hardtanh(inplace=True, min_val=0.001, max_val=0.999)
|
| 102 |
+
nn.Hardsigmoid(inplace=True)
|
| 103 |
+
)
|
| 104 |
+
else:
|
| 105 |
+
|
| 106 |
+
self.proj = nn.Sequential(
|
| 107 |
+
nn.Linear(self.input_dim, self.probe_class),
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
self.apply(self._init_weights)
|
| 111 |
+
# logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))
|
| 112 |
+
self.to(device)
|
| 113 |
+
def forward(self, act, y=None):
|
| 114 |
+
# [B, f], [B]
|
| 115 |
+
logits = self.proj(act)#.reshape(-1, self.probe_number, self.probe_class) # [B, C]
|
| 116 |
+
if y is None:
|
| 117 |
+
return logits, None
|
| 118 |
+
else:
|
| 119 |
+
targets = y.to(torch.long)
|
| 120 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-100)
|
| 121 |
+
return logits, loss
|
| 122 |
+
|
| 123 |
+
def _init_weights(self, module):
|
| 124 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
| 125 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
| 126 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
| 127 |
+
module.bias.data.zero_()
|
| 128 |
+
elif isinstance(module, nn.LayerNorm):
|
| 129 |
+
module.bias.data.zero_()
|
| 130 |
+
module.weight.data.fill_(1.0)
|
| 131 |
+
|
| 132 |
+
def configure_optimizers(self, train_config):
|
| 133 |
+
"""
|
| 134 |
+
This long function is unfortunately doing something very simple and is being very defensive:
|
| 135 |
+
We are separating out all parameters of the model into two buckets: those that will experience
|
| 136 |
+
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
|
| 137 |
+
We are then returning the PyTorch optimizer object.
|
| 138 |
+
"""
|
| 139 |
+
# separate out all parameters to those that will and won't experience regularizing weight decay
|
| 140 |
+
decay = set()
|
| 141 |
+
no_decay = set()
|
| 142 |
+
whitelist_weight_modules = (torch.nn.Linear, )
|
| 143 |
+
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
|
| 144 |
+
for mn, m in self.named_modules():
|
| 145 |
+
for pn, p in m.named_parameters():
|
| 146 |
+
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
|
| 147 |
+
if pn.endswith('bias'):
|
| 148 |
+
# biases of whitelist modules will be weight decayed
|
| 149 |
+
decay.add(fpn)
|
| 150 |
+
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
|
| 151 |
+
# weights of whitelist modules will be weight decayed
|
| 152 |
+
decay.add(fpn)
|
| 153 |
+
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
|
| 154 |
+
# weights of blacklist modules will NOT be weight decayed
|
| 155 |
+
no_decay.add(fpn)
|
| 156 |
+
|
| 157 |
+
# special case the position embedding parameter in the root GPT module as not decayed
|
| 158 |
+
# no_decay.add('pos_emb')
|
| 159 |
+
|
| 160 |
+
# validate that we considered every parameter
|
| 161 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
| 162 |
+
inter_params = decay & no_decay
|
| 163 |
+
union_params = decay | no_decay
|
| 164 |
+
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
|
| 165 |
+
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
|
| 166 |
+
% (str(param_dict.keys() - union_params), )
|
| 167 |
+
print("Decayed:", decay)
|
| 168 |
+
# create the pytorch optimizer object
|
| 169 |
+
optim_groups = [
|
| 170 |
+
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": train_config.weight_decay},
|
| 171 |
+
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
|
| 172 |
+
]
|
| 173 |
+
optimizer = torch.optim.Adam(optim_groups, lr=train_config.learning_rate, betas=train_config.betas)
|
| 174 |
+
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.75, patience=0)
|
| 175 |
+
return optimizer, scheduler
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
class TwoLayerLinearProbeClassification(nn.Module):
|
| 179 |
+
def __init__(self, device, probe_class, input_dim=512, logistic=False): # from 0 to 15
|
| 180 |
+
super().__init__()
|
| 181 |
+
self.input_dim = input_dim
|
| 182 |
+
self.probe_class = probe_class
|
| 183 |
+
if not logistic:
|
| 184 |
+
self.proj = nn.Sequential(
|
| 185 |
+
nn.Linear(self.input_dim, self.input_dim),
|
| 186 |
+
nn.Linear(self.input_dim, self.probe_class),
|
| 187 |
+
)
|
| 188 |
+
else:
|
| 189 |
+
self.proj = nn.Sequential(
|
| 190 |
+
nn.Linear(self.input_dim, self.input_dim),
|
| 191 |
+
nn.Linear(self.input_dim, self.probe_class),
|
| 192 |
+
nn.Sigmoid()
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
self.apply(self._init_weights)
|
| 196 |
+
# logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))
|
| 197 |
+
self.to(device)
|
| 198 |
+
def forward(self, act, y=None):
|
| 199 |
+
# [B, f], [B]
|
| 200 |
+
logits = self.proj(act)#.reshape(-1, self.probe_number, self.probe_class) # [B, C]
|
| 201 |
+
if y is None:
|
| 202 |
+
return logits, None
|
| 203 |
+
else:
|
| 204 |
+
targets = y.to(torch.long)
|
| 205 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-100)
|
| 206 |
+
return logits, loss
|
| 207 |
+
|
| 208 |
+
def _init_weights(self, module):
|
| 209 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
| 210 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
| 211 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
| 212 |
+
module.bias.data.zero_()
|
| 213 |
+
elif isinstance(module, nn.LayerNorm):
|
| 214 |
+
module.bias.data.zero_()
|
| 215 |
+
module.weight.data.fill_(1.0)
|
| 216 |
+
|
| 217 |
+
def configure_optimizers(self, train_config):
|
| 218 |
+
"""
|
| 219 |
+
This long function is unfortunately doing something very simple and is being very defensive:
|
| 220 |
+
We are separating out all parameters of the model into two buckets: those that will experience
|
| 221 |
+
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
|
| 222 |
+
We are then returning the PyTorch optimizer object.
|
| 223 |
+
"""
|
| 224 |
+
# separate out all parameters to those that will and won't experience regularizing weight decay
|
| 225 |
+
decay = set()
|
| 226 |
+
no_decay = set()
|
| 227 |
+
whitelist_weight_modules = (torch.nn.Linear, )
|
| 228 |
+
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
|
| 229 |
+
for mn, m in self.named_modules():
|
| 230 |
+
for pn, p in m.named_parameters():
|
| 231 |
+
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
|
| 232 |
+
if pn.endswith('bias'):
|
| 233 |
+
# biases of whitelist modules will be weight decayed
|
| 234 |
+
decay.add(fpn)
|
| 235 |
+
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
|
| 236 |
+
# weights of whitelist modules will be weight decayed
|
| 237 |
+
decay.add(fpn)
|
| 238 |
+
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
|
| 239 |
+
# weights of blacklist modules will NOT be weight decayed
|
| 240 |
+
no_decay.add(fpn)
|
| 241 |
+
|
| 242 |
+
# special case the position embedding parameter in the root GPT module as not decayed
|
| 243 |
+
# no_decay.add('pos_emb')
|
| 244 |
+
|
| 245 |
+
# validate that we considered every parameter
|
| 246 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
| 247 |
+
inter_params = decay & no_decay
|
| 248 |
+
union_params = decay | no_decay
|
| 249 |
+
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
|
| 250 |
+
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
|
| 251 |
+
% (str(param_dict.keys() - union_params), )
|
| 252 |
+
print("Decayed:", decay)
|
| 253 |
+
# create the pytorch optimizer object
|
| 254 |
+
optim_groups = [
|
| 255 |
+
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": train_config.weight_decay},
|
| 256 |
+
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
|
| 257 |
+
]
|
| 258 |
+
optimizer = torch.optim.Adam(optim_groups, lr=train_config.learning_rate, betas=train_config.betas)
|
| 259 |
+
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.75, patience=0)
|
| 260 |
+
return optimizer, scheduler
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
class ProbeClassificationMixScaler(nn.Module):
|
| 264 |
+
def __init__(self, device, probe_class, input_dim=512, num_layers=41, soft_weight_lr_rate=1e-1,
|
| 265 |
+
hidden_neurons=128): # from 0 to 15
|
| 266 |
+
super().__init__()
|
| 267 |
+
self.input_dim = input_dim
|
| 268 |
+
self.probe_class = probe_class
|
| 269 |
+
self.num_layers = num_layers
|
| 270 |
+
# self.mix_weights = torch.nn.Parameter(1 / num_layers * torch.ones(num_layers), requires_grad=True)
|
| 271 |
+
self.mix_weights = nn.Linear(num_layers, 1, bias=False)
|
| 272 |
+
torch.nn.init.constant_(self.mix_weights.weight, 1 / num_layers)
|
| 273 |
+
self.soft_weight_lr_rate=soft_weight_lr_rate
|
| 274 |
+
self.proj = nn.Sequential(
|
| 275 |
+
nn.Linear(self.input_dim, hidden_neurons),
|
| 276 |
+
nn.ReLU(True),
|
| 277 |
+
nn.Linear(hidden_neurons, self.probe_class),
|
| 278 |
+
)
|
| 279 |
+
self.apply(self._init_weights)
|
| 280 |
+
# logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))
|
| 281 |
+
self.to(device)
|
| 282 |
+
def forward(self, act, y=None):
|
| 283 |
+
# [B, f], [B]
|
| 284 |
+
softmaxed_weights = torch.nn.functional.softmax(self.mix_weights.weight, dim=1)
|
| 285 |
+
act = act.permute([0, 2, 1])
|
| 286 |
+
act = (act @ softmaxed_weights.T)[..., 0]
|
| 287 |
+
logits = self.proj(act)#.reshape(-1, self.probe_number, self.probe_class) # [B, C]
|
| 288 |
+
if y is None:
|
| 289 |
+
return logits, None
|
| 290 |
+
else:
|
| 291 |
+
targets = y.to(torch.long)
|
| 292 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-100)
|
| 293 |
+
return logits, loss
|
| 294 |
+
|
| 295 |
+
def _init_weights(self, module):
|
| 296 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
| 297 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
| 298 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
| 299 |
+
module.bias.data.zero_()
|
| 300 |
+
elif isinstance(module, nn.LayerNorm):
|
| 301 |
+
module.bias.data.zero_()
|
| 302 |
+
module.weight.data.fill_(1.0)
|
| 303 |
+
|
| 304 |
+
def configure_optimizers(self, train_config):
|
| 305 |
+
"""
|
| 306 |
+
This long function is unfortunately doing something very simple and is being very defensive:
|
| 307 |
+
We are separating out all parameters of the model into two buckets: those that will experience
|
| 308 |
+
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
|
| 309 |
+
We are then returning the PyTorch optimizer object.
|
| 310 |
+
"""
|
| 311 |
+
# separate out all parameters to those that will and won't experience regularizing weight decay
|
| 312 |
+
decay = set()
|
| 313 |
+
no_decay = set()
|
| 314 |
+
whitelist_weight_modules = (torch.nn.Linear, )
|
| 315 |
+
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
|
| 316 |
+
for mn, m in self.named_modules():
|
| 317 |
+
for pn, p in m.named_parameters():
|
| 318 |
+
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
|
| 319 |
+
if pn.endswith('bias'):
|
| 320 |
+
# biases of whitelist modules will be weight decayed
|
| 321 |
+
decay.add(fpn)
|
| 322 |
+
elif pn.endswith('weight') and (not "mix" in fpn) and isinstance(m, whitelist_weight_modules):
|
| 323 |
+
# weights of whitelist modules will be weight decayed
|
| 324 |
+
decay.add(fpn)
|
| 325 |
+
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
|
| 326 |
+
# weights of blacklist modules will NOT be weight decayed
|
| 327 |
+
no_decay.add(fpn)
|
| 328 |
+
|
| 329 |
+
# special case the position embedding parameter in the root GPT module as not decayed
|
| 330 |
+
# no_decay.add('pos_emb')
|
| 331 |
+
|
| 332 |
+
# validate that we considered every parameter
|
| 333 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
| 334 |
+
inter_params = decay & no_decay
|
| 335 |
+
union_params = decay | no_decay
|
| 336 |
+
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
|
| 337 |
+
# assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
|
| 338 |
+
# % (str(param_dict.keys() - union_params), )
|
| 339 |
+
print("Decayed:", decay)
|
| 340 |
+
# create the pytorch optimizer object
|
| 341 |
+
optim_groups = [
|
| 342 |
+
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": train_config.weight_decay},
|
| 343 |
+
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
|
| 344 |
+
{'params': self.mix_weights.weight, "lr": self.soft_weight_lr_rate, "weight_decay": train_config.weight_decay},
|
| 345 |
+
]
|
| 346 |
+
optimizer = torch.optim.Adam(optim_groups, lr=train_config.learning_rate, betas=train_config.betas)
|
| 347 |
+
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.75, patience=0)
|
| 348 |
+
return optimizer, scheduler
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
class LinearProbeClassificationMixScaler(nn.Module):
|
| 352 |
+
def __init__(self, device, probe_class, input_dim=512, num_layers=41, soft_weight_lr_rate=1e-1,
|
| 353 |
+
logistic=False): # from 0 to 15
|
| 354 |
+
super().__init__()
|
| 355 |
+
self.input_dim = input_dim
|
| 356 |
+
self.probe_class = probe_class
|
| 357 |
+
self.num_layers = num_layers
|
| 358 |
+
# self.mix_weights = torch.nn.Parameter(1 / num_layers * torch.ones(num_layers), requires_grad=True)
|
| 359 |
+
self.mix_weights = nn.Linear(num_layers, 1, bias=False)
|
| 360 |
+
torch.nn.init.constant_(self.mix_weights.weight, 1 / num_layers)
|
| 361 |
+
self.soft_weight_lr_rate=soft_weight_lr_rate
|
| 362 |
+
if not logistic:
|
| 363 |
+
self.proj = nn.Sequential(
|
| 364 |
+
nn.Linear(self.input_dim, self.probe_class),
|
| 365 |
+
)
|
| 366 |
+
else:
|
| 367 |
+
self.proj = nn.Sequential(
|
| 368 |
+
nn.Linear(self.input_dim, self.probe_class),
|
| 369 |
+
nn.Sigmoid()
|
| 370 |
+
)
|
| 371 |
+
self.apply(self._init_weights)
|
| 372 |
+
# logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))
|
| 373 |
+
self.to(device)
|
| 374 |
+
def forward(self, act, y=None):
|
| 375 |
+
# [B, f], [B]
|
| 376 |
+
softmaxed_weights = torch.nn.functional.softmax(self.mix_weights.weight, dim=1)
|
| 377 |
+
act = act.permute([0, 2, 1])
|
| 378 |
+
act = (act @ softmaxed_weights.T)[..., 0]
|
| 379 |
+
logits = self.proj(act)#.reshape(-1, self.probe_number, self.probe_class) # [B, C]
|
| 380 |
+
if y is None:
|
| 381 |
+
return logits, None
|
| 382 |
+
else:
|
| 383 |
+
targets = y.to(torch.long)
|
| 384 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-100)
|
| 385 |
+
return logits, loss
|
| 386 |
+
|
| 387 |
+
def _init_weights(self, module):
|
| 388 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
| 389 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
| 390 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
| 391 |
+
module.bias.data.zero_()
|
| 392 |
+
elif isinstance(module, nn.LayerNorm):
|
| 393 |
+
module.bias.data.zero_()
|
| 394 |
+
module.weight.data.fill_(1.0)
|
| 395 |
+
|
| 396 |
+
def configure_optimizers(self, train_config):
|
| 397 |
+
"""
|
| 398 |
+
This long function is unfortunately doing something very simple and is being very defensive:
|
| 399 |
+
We are separating out all parameters of the model into two buckets: those that will experience
|
| 400 |
+
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
|
| 401 |
+
We are then returning the PyTorch optimizer object.
|
| 402 |
+
"""
|
| 403 |
+
# separate out all parameters to those that will and won't experience regularizing weight decay
|
| 404 |
+
decay = set()
|
| 405 |
+
no_decay = set()
|
| 406 |
+
whitelist_weight_modules = (torch.nn.Linear, )
|
| 407 |
+
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
|
| 408 |
+
for mn, m in self.named_modules():
|
| 409 |
+
for pn, p in m.named_parameters():
|
| 410 |
+
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
|
| 411 |
+
if pn.endswith('bias'):
|
| 412 |
+
# biases of whitelist modules will be weight decayed
|
| 413 |
+
decay.add(fpn)
|
| 414 |
+
elif pn.endswith('weight') and (not "mix" in fpn) and isinstance(m, whitelist_weight_modules):
|
| 415 |
+
# weights of whitelist modules will be weight decayed
|
| 416 |
+
decay.add(fpn)
|
| 417 |
+
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
|
| 418 |
+
# weights of blacklist modules will NOT be weight decayed
|
| 419 |
+
no_decay.add(fpn)
|
| 420 |
+
|
| 421 |
+
# special case the position embedding parameter in the root GPT module as not decayed
|
| 422 |
+
# no_decay.add('pos_emb')
|
| 423 |
+
|
| 424 |
+
# validate that we considered every parameter
|
| 425 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
| 426 |
+
inter_params = decay & no_decay
|
| 427 |
+
union_params = decay | no_decay
|
| 428 |
+
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
|
| 429 |
+
# assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
|
| 430 |
+
# % (str(param_dict.keys() - union_params), )
|
| 431 |
+
print("Decayed:", decay)
|
| 432 |
+
# create the pytorch optimizer object
|
| 433 |
+
optim_groups = [
|
| 434 |
+
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": train_config.weight_decay},
|
| 435 |
+
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
|
| 436 |
+
{'params': self.mix_weights.weight, "lr": self.soft_weight_lr_rate, "weight_decay": train_config.weight_decay},
|
| 437 |
+
]
|
| 438 |
+
optimizer = torch.optim.Adam(optim_groups, lr=train_config.learning_rate, betas=train_config.betas)
|
| 439 |
+
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.75, patience=0)
|
| 440 |
+
return optimizer, scheduler
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
class TwoLayerLinearProbeClassificationMixScaler(nn.Module):
|
| 444 |
+
def __init__(self, device, probe_class, input_dim=512, num_layers=41, soft_weight_lr_rate=1e-1,
|
| 445 |
+
logistic=False): # from 0 to 15
|
| 446 |
+
super().__init__()
|
| 447 |
+
self.input_dim = input_dim
|
| 448 |
+
self.probe_class = probe_class
|
| 449 |
+
self.num_layers = num_layers
|
| 450 |
+
# self.mix_weights = torch.nn.Parameter(1 / num_layers * torch.ones(num_layers), requires_grad=True)
|
| 451 |
+
self.mix_weights = nn.Linear(num_layers, 1, bias=False)
|
| 452 |
+
torch.nn.init.constant_(self.mix_weights.weight, 1 / num_layers)
|
| 453 |
+
self.soft_weight_lr_rate=soft_weight_lr_rate
|
| 454 |
+
self.rotates = nn.ModuleList([nn.Linear(5120, 5120) for _ in range(41)]),
|
| 455 |
+
if not logistic:
|
| 456 |
+
self.proj = nn.Sequential(
|
| 457 |
+
nn.Linear(self.input_dim, self.probe_class),
|
| 458 |
+
)
|
| 459 |
+
else:
|
| 460 |
+
self.proj = nn.Sequential(
|
| 461 |
+
nn.Linear(self.input_dim, self.probe_class),
|
| 462 |
+
nn.Sigmoid()
|
| 463 |
+
)
|
| 464 |
+
self.apply(self._init_weights)
|
| 465 |
+
# logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))
|
| 466 |
+
self.to(device)
|
| 467 |
+
def forward(self, act, y=None):
|
| 468 |
+
# [B, f], [B]
|
| 469 |
+
outputs = []
|
| 470 |
+
for i in range(num_vectors):
|
| 471 |
+
output_i = self.rotates[i](act[:, i, :]) # shape: (batch_size, 5120)
|
| 472 |
+
outputs.append(output_i)
|
| 473 |
+
|
| 474 |
+
# Stack the outputs back together
|
| 475 |
+
act = torch.stack(outputs, dim=1)
|
| 476 |
+
softmaxed_weights = torch.nn.functional.softmax(self.mix_weights.weight, dim=1)
|
| 477 |
+
act = act.permute([0, 2, 1])
|
| 478 |
+
act = (act @ softmaxed_weights.T)[..., 0]
|
| 479 |
+
logits = self.proj(act)#.reshape(-1, self.probe_number, self.probe_class) # [B, C]
|
| 480 |
+
if y is None:
|
| 481 |
+
return logits, None
|
| 482 |
+
else:
|
| 483 |
+
targets = y.to(torch.long)
|
| 484 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-100)
|
| 485 |
+
return logits, loss
|
| 486 |
+
|
| 487 |
+
def _init_weights(self, module):
|
| 488 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
| 489 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
| 490 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
| 491 |
+
module.bias.data.zero_()
|
| 492 |
+
elif isinstance(module, nn.LayerNorm):
|
| 493 |
+
module.bias.data.zero_()
|
| 494 |
+
module.weight.data.fill_(1.0)
|
| 495 |
+
|
| 496 |
+
def configure_optimizers(self, train_config):
|
| 497 |
+
"""
|
| 498 |
+
This long function is unfortunately doing something very simple and is being very defensive:
|
| 499 |
+
We are separating out all parameters of the model into two buckets: those that will experience
|
| 500 |
+
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
|
| 501 |
+
We are then returning the PyTorch optimizer object.
|
| 502 |
+
"""
|
| 503 |
+
# separate out all parameters to those that will and won't experience regularizing weight decay
|
| 504 |
+
decay = set()
|
| 505 |
+
no_decay = set()
|
| 506 |
+
whitelist_weight_modules = (torch.nn.Linear, )
|
| 507 |
+
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
|
| 508 |
+
for mn, m in self.named_modules():
|
| 509 |
+
for pn, p in m.named_parameters():
|
| 510 |
+
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
|
| 511 |
+
if pn.endswith('bias'):
|
| 512 |
+
# biases of whitelist modules will be weight decayed
|
| 513 |
+
decay.add(fpn)
|
| 514 |
+
elif pn.endswith('weight') and (not "mix" in fpn) and isinstance(m, whitelist_weight_modules):
|
| 515 |
+
# weights of whitelist modules will be weight decayed
|
| 516 |
+
decay.add(fpn)
|
| 517 |
+
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
|
| 518 |
+
# weights of blacklist modules will NOT be weight decayed
|
| 519 |
+
no_decay.add(fpn)
|
| 520 |
+
|
| 521 |
+
# special case the position embedding parameter in the root GPT module as not decayed
|
| 522 |
+
# no_decay.add('pos_emb')
|
| 523 |
+
|
| 524 |
+
# validate that we considered every parameter
|
| 525 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
| 526 |
+
inter_params = decay & no_decay
|
| 527 |
+
union_params = decay | no_decay
|
| 528 |
+
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
|
| 529 |
+
# assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
|
| 530 |
+
# % (str(param_dict.keys() - union_params), )
|
| 531 |
+
print("Decayed:", decay)
|
| 532 |
+
# create the pytorch optimizer object
|
| 533 |
+
optim_groups = [
|
| 534 |
+
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": train_config.weight_decay},
|
| 535 |
+
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
|
| 536 |
+
{'params': self.mix_weights.weight, "lr": self.soft_weight_lr_rate, "weight_decay": train_config.weight_decay},
|
| 537 |
+
]
|
| 538 |
+
optimizer = torch.optim.Adam(optim_groups, lr=train_config.learning_rate, betas=train_config.betas)
|
| 539 |
+
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.75, patience=0)
|
| 540 |
+
return optimizer, scheduler
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
class TrainerConfig:
|
| 544 |
+
# optimization parameters
|
| 545 |
+
learning_rate = 1e-3
|
| 546 |
+
betas = (0.9, 0.95)
|
| 547 |
+
weight_decay = 0.1 # only applied on matmul weights
|
| 548 |
+
|
| 549 |
+
def __init__(self, **kwargs):
|
| 550 |
+
for k,v in kwargs.items():
|
| 551 |
+
setattr(self, k, v)
|
src/prompt_utils.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def split_into_messages(text: str) -> list[str]:
|
| 2 |
+
# Constants used for splitting
|
| 3 |
+
B_INST, E_INST = "[INST]", "[/INST]"
|
| 4 |
+
|
| 5 |
+
# Use the tokens to split the text
|
| 6 |
+
parts = []
|
| 7 |
+
current_message = ""
|
| 8 |
+
|
| 9 |
+
for word in text.split():
|
| 10 |
+
# If we encounter a start or end token, and there's a current message, store it
|
| 11 |
+
if word in [B_INST, E_INST] and current_message:
|
| 12 |
+
parts.append(current_message.strip())
|
| 13 |
+
current_message = ""
|
| 14 |
+
# If the word is not a token, add it to the current message
|
| 15 |
+
elif word not in [B_INST, E_INST]:
|
| 16 |
+
current_message += word + " "
|
| 17 |
+
|
| 18 |
+
# Append any remaining message
|
| 19 |
+
if current_message:
|
| 20 |
+
parts.append(current_message.strip())
|
| 21 |
+
|
| 22 |
+
return parts
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def llama_v2_reverse(prompt: str) -> list[dict]:
|
| 26 |
+
# Constants used in the LLaMa style
|
| 27 |
+
B_INST, E_INST = "[INST]", "[/INST]"
|
| 28 |
+
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
| 29 |
+
BOS, EOS = "<s>", "</s>"
|
| 30 |
+
# DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""
|
| 31 |
+
|
| 32 |
+
# Split by the message separators
|
| 33 |
+
# prompt = promp
|
| 34 |
+
# segments = [s.strip() for s in prompt.split(E_INST) if s.strip()]
|
| 35 |
+
|
| 36 |
+
messages = []
|
| 37 |
+
sys_start = prompt.find(B_SYS)
|
| 38 |
+
sys_end = prompt.rfind(E_SYS)
|
| 39 |
+
if sys_start != -1 and sys_end != -1:
|
| 40 |
+
system_msg = prompt[sys_start + len(B_SYS): sys_end]
|
| 41 |
+
messages.append({"role": "system", "content": system_msg})
|
| 42 |
+
prompt = prompt[sys_end + len(E_SYS):]
|
| 43 |
+
|
| 44 |
+
user_ai_msgs = split_into_messages(prompt)
|
| 45 |
+
|
| 46 |
+
user_turn = True
|
| 47 |
+
for message in user_ai_msgs:
|
| 48 |
+
if user_turn:
|
| 49 |
+
messages.append({"role": "user", "content": message})
|
| 50 |
+
else:
|
| 51 |
+
messages.append({"role": "assistant", "content": message})
|
| 52 |
+
|
| 53 |
+
if user_turn:
|
| 54 |
+
user_turn = False
|
| 55 |
+
else:
|
| 56 |
+
user_turn = True
|
| 57 |
+
|
| 58 |
+
return messages
|
src/train_test_utils.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from tqdm.auto import tqdm
|
| 3 |
+
import time
|
| 4 |
+
import numpy as np
|
| 5 |
+
from src.losses import calc_prob_uncertinty
|
| 6 |
+
tic, toc = (time.time, time.time)
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def train(probe, device, train_loader, optimizer, epoch, loss_func,
|
| 10 |
+
class_names=None, report=False, verbose_interval=5, layer_num=40,
|
| 11 |
+
head=None, verbose=True, return_raw_outputs=False, one_hot=False, uncertainty=False, **kwargs,):
|
| 12 |
+
"""
|
| 13 |
+
:param model: pytorch model (class:torch.nn.Module)
|
| 14 |
+
:param device: device used to train the model (e.g. torch.device("cuda") for training on GPU)
|
| 15 |
+
:param train_loader: torch.utils.data.DataLoader of train dataset
|
| 16 |
+
:param optimizer: optimizer for the model
|
| 17 |
+
:param epoch: current epoch of training
|
| 18 |
+
:param loss_func: loss function for the training
|
| 19 |
+
:param class_names: str Name for the classification classses. used in train report
|
| 20 |
+
:param report: whether to print a classification report of training
|
| 21 |
+
:param train_verbose: print a train progress report after how many batches of training in each epoch
|
| 22 |
+
:return: average loss, train accuracy, true labels, predictions
|
| 23 |
+
"""
|
| 24 |
+
assert (verbose_interval is None) or verbose_interval > 0, "invalid verbose_interval, verbose_interval(int) > 0"
|
| 25 |
+
starttime = tic()
|
| 26 |
+
# Set the model to the train mode: Essential for proper gradient descent
|
| 27 |
+
probe.train()
|
| 28 |
+
loss_sum = 0
|
| 29 |
+
correct = 0
|
| 30 |
+
tot = 0
|
| 31 |
+
|
| 32 |
+
preds = []
|
| 33 |
+
truths = []
|
| 34 |
+
|
| 35 |
+
# Iterate through the train dataset
|
| 36 |
+
for batch_idx, batch in enumerate(train_loader):
|
| 37 |
+
batch_size = 1
|
| 38 |
+
target = batch["age"].long().cuda()
|
| 39 |
+
if one_hot:
|
| 40 |
+
target = torch.nn.functional.one_hot(target, **kwargs).float()
|
| 41 |
+
optimizer.zero_grad()
|
| 42 |
+
|
| 43 |
+
if layer_num or layer_num == 0:
|
| 44 |
+
act = batch["hidden_states"][:, layer_num,].to("cuda")
|
| 45 |
+
else:
|
| 46 |
+
act = batch["hidden_states"].to("cuda")
|
| 47 |
+
output = probe(act)
|
| 48 |
+
if not one_hot:
|
| 49 |
+
loss = loss_func(output[0], target, **kwargs)
|
| 50 |
+
else:
|
| 51 |
+
loss = loss_func(output[0], target)
|
| 52 |
+
loss.backward()
|
| 53 |
+
optimizer.step()
|
| 54 |
+
|
| 55 |
+
loss_sum += loss.sum().item()
|
| 56 |
+
if uncertainty:
|
| 57 |
+
pred, uncertainty = calc_prob_uncertinty(output[0].detach().cpu().numpy())
|
| 58 |
+
pred = torch.argmax(output[0], axis=1)
|
| 59 |
+
|
| 60 |
+
# In the Scikit-Learn's implementation of OvR Multi-class Logistic Regression. They linearly normalized the predicted probability and then call argmax
|
| 61 |
+
# Below is an equivalent implementation of the scikit-learn's decision function. The only difference is we didn't do the linearly normalization
|
| 62 |
+
# To save some computation time
|
| 63 |
+
if len(target.shape) > 1:
|
| 64 |
+
target = torch.argmax(target, axis=1)
|
| 65 |
+
correct += np.sum(np.array(pred.detach().cpu().numpy()) == np.array(target.detach().cpu().numpy()))
|
| 66 |
+
if return_raw_outputs:
|
| 67 |
+
preds.append(pred.detach().cpu().numpy())
|
| 68 |
+
truths.append(target.detach().cpu().numpy())
|
| 69 |
+
tot += pred.shape[0]
|
| 70 |
+
|
| 71 |
+
train_acc = correct / tot
|
| 72 |
+
loss_avg = loss_sum / len(train_loader)
|
| 73 |
+
|
| 74 |
+
endtime = toc()
|
| 75 |
+
if verbose:
|
| 76 |
+
print('\nTrain set: Average loss: {:.4f} ({:.3f} sec) Accuracy: {:.3f}\n'.\
|
| 77 |
+
format(loss_avg,
|
| 78 |
+
endtime-starttime,
|
| 79 |
+
train_acc))
|
| 80 |
+
|
| 81 |
+
preds = np.concatenate(preds)
|
| 82 |
+
truths = np.concatenate(truths)
|
| 83 |
+
|
| 84 |
+
if return_raw_outputs:
|
| 85 |
+
return loss_avg, train_acc, preds, truths
|
| 86 |
+
else:
|
| 87 |
+
return loss_avg, train_acc
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def test(probe, device, test_loader, loss_func, return_raw_outputs=False, verbose=True,
|
| 91 |
+
layer_num=40, scheduler=None, one_hot=False, uncertainty=False, **kwargs):
|
| 92 |
+
"""
|
| 93 |
+
:param model: pytorch model (class:torch.nn.Module)
|
| 94 |
+
:param device: device used to train the model (e.g. torch.device("cuda") for training on GPU)
|
| 95 |
+
:param test_loader: torch.utils.data.DataLoader of test dataset
|
| 96 |
+
:param loss_func: loss function for the training
|
| 97 |
+
:param class_names: str Name for the classification classses. used in train report
|
| 98 |
+
:param test_report: whether to print a classification report of testing after each epoch
|
| 99 |
+
:param return_raw_outputs: whether return the raw outputs of model (before argmax). used for auc computation
|
| 100 |
+
:return: average test loss, test accuracy, true labels, predictions, (and raw outputs \
|
| 101 |
+
from model if return_raw_outputs)
|
| 102 |
+
"""
|
| 103 |
+
# Set the model to evaluation mode: Essential for testing model
|
| 104 |
+
probe.eval()
|
| 105 |
+
test_loss = 0
|
| 106 |
+
tot = 0
|
| 107 |
+
correct = 0
|
| 108 |
+
preds = []
|
| 109 |
+
truths = []
|
| 110 |
+
|
| 111 |
+
# Do not call gradient descent on the test set
|
| 112 |
+
# We don't adjust the weights of model on the test set
|
| 113 |
+
with torch.no_grad():
|
| 114 |
+
for batch_idx, batch in enumerate(test_loader):
|
| 115 |
+
batch_size = 1
|
| 116 |
+
target = batch["age"].long().cuda()
|
| 117 |
+
if one_hot:
|
| 118 |
+
target = torch.nn.functional.one_hot(target, **kwargs).float()
|
| 119 |
+
if layer_num or layer_num == 0:
|
| 120 |
+
act = batch["hidden_states"][:, layer_num,].to("cuda")
|
| 121 |
+
else:
|
| 122 |
+
act = batch["hidden_states"].to("cuda")
|
| 123 |
+
output = probe(act)
|
| 124 |
+
if uncertainty:
|
| 125 |
+
pred, uncertainty = calc_prob_uncertinty(output[0].detach().cpu().numpy())
|
| 126 |
+
pred = torch.argmax(output[0], axis=1)
|
| 127 |
+
|
| 128 |
+
if not one_hot:
|
| 129 |
+
loss = loss_func(output[0], target, **kwargs)
|
| 130 |
+
else:
|
| 131 |
+
loss = loss_func(output[0], target)
|
| 132 |
+
test_loss += loss.sum().item() # sum up batch loss
|
| 133 |
+
|
| 134 |
+
# In the Scikit-Learn's implementation of OvR Multi-class Logistic Regression. They linearly normalized the predicted probability and then call argmax
|
| 135 |
+
# Below is an equivalent implementation of the scikit-learn's decision function. The only difference is we didn't do the linearly normalization
|
| 136 |
+
# To save some computation time
|
| 137 |
+
if len(target.shape) > 1:
|
| 138 |
+
target = torch.argmax(target, axis=1)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
pred = np.array(pred.detach().cpu().numpy())
|
| 142 |
+
target = np.array(target.detach().cpu().numpy())
|
| 143 |
+
correct += np.sum(pred == target)
|
| 144 |
+
tot += pred.shape[0]
|
| 145 |
+
if return_raw_outputs:
|
| 146 |
+
preds.append(pred)
|
| 147 |
+
truths.append(target)
|
| 148 |
+
|
| 149 |
+
test_loss /= len(test_loader)
|
| 150 |
+
if scheduler:
|
| 151 |
+
scheduler.step(test_loss)
|
| 152 |
+
|
| 153 |
+
test_acc = correct / tot
|
| 154 |
+
|
| 155 |
+
if verbose:
|
| 156 |
+
print('Test set: Average loss: {:.4f}, Accuracy: {:.3f}\n'.format(
|
| 157 |
+
test_loss,
|
| 158 |
+
test_acc))
|
| 159 |
+
|
| 160 |
+
preds = np.concatenate(preds)
|
| 161 |
+
truths = np.concatenate(truths)
|
| 162 |
+
|
| 163 |
+
# If return the raw outputs (before argmax) from the model
|
| 164 |
+
if return_raw_outputs:
|
| 165 |
+
return test_loss, test_acc, preds, truths
|
| 166 |
+
else:
|
| 167 |
+
return test_loss, test_acc
|
| 168 |
+
|
| 169 |
+
import torch
|
| 170 |
+
from tqdm.auto import tqdm
|
| 171 |
+
import time
|
| 172 |
+
import numpy as np
|
| 173 |
+
from .losses import calc_prob_uncertinty
|
| 174 |
+
tic, toc = (time.time, time.time)
|
train_probes.py
ADDED
|
@@ -0,0 +1,523 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Train reading and controlling probes for LLM attribute detection.
|
| 4 |
+
This script trains linear probes on different layers of a language model to detect
|
| 5 |
+
demographic attributes (age, gender, socioeconomic status, education level).
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
import argparse
|
| 11 |
+
import pickle
|
| 12 |
+
import time
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
from typing import Dict, List, Tuple, Optional
|
| 15 |
+
|
| 16 |
+
import torch
|
| 17 |
+
import torch.nn as nn
|
| 18 |
+
import torch.nn.functional as F
|
| 19 |
+
from torch.utils.data import DataLoader, Subset
|
| 20 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 21 |
+
from tqdm.auto import tqdm
|
| 22 |
+
import sklearn.model_selection
|
| 23 |
+
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
|
| 24 |
+
import matplotlib.pyplot as plt
|
| 25 |
+
|
| 26 |
+
# Import custom modules
|
| 27 |
+
try:
|
| 28 |
+
from src.dataset import TextDataset
|
| 29 |
+
from src.probes import LinearProbeClassification
|
| 30 |
+
from src.train_test_utils import train, test
|
| 31 |
+
from src.losses import edl_mse_loss
|
| 32 |
+
except ImportError as e:
|
| 33 |
+
print(f"β ERROR: Failed to import required modules: {e}")
|
| 34 |
+
print("Please ensure all required modules are in the correct location.")
|
| 35 |
+
sys.exit(1)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class TrainerConfig:
|
| 39 |
+
"""Configuration for training probes."""
|
| 40 |
+
learning_rate = 1e-3
|
| 41 |
+
betas = (0.9, 0.95)
|
| 42 |
+
weight_decay = 0.1 # only applied on matmul weights
|
| 43 |
+
|
| 44 |
+
def __init__(self, **kwargs):
|
| 45 |
+
for k, v in kwargs.items():
|
| 46 |
+
setattr(self, k, v)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class ProbeTrainer:
|
| 50 |
+
"""Main class for training reading and controlling probes."""
|
| 51 |
+
|
| 52 |
+
def __init__(self, model_name: str = "meta-llama/Llama-2-13b-chat-hf",
|
| 53 |
+
device: str = "cuda", use_auth_token: bool = True):
|
| 54 |
+
"""
|
| 55 |
+
Initialize the probe trainer.
|
| 56 |
+
|
| 57 |
+
Args:
|
| 58 |
+
model_name: HuggingFace model name
|
| 59 |
+
device: Device to use for training
|
| 60 |
+
use_auth_token: Whether to use auth token for model download
|
| 61 |
+
"""
|
| 62 |
+
self.device = device
|
| 63 |
+
self.model_name = model_name
|
| 64 |
+
|
| 65 |
+
# Configuration flags
|
| 66 |
+
self.new_prompt_format = True
|
| 67 |
+
self.residual_stream = True
|
| 68 |
+
self.uncertainty = False
|
| 69 |
+
self.logistic = True
|
| 70 |
+
self.augmented = False
|
| 71 |
+
self.remove_last_ai_response = True
|
| 72 |
+
self.include_inst = True
|
| 73 |
+
self.one_hot = True
|
| 74 |
+
|
| 75 |
+
# Label mappings
|
| 76 |
+
self.label_mappings = {
|
| 77 |
+
"_age_": {
|
| 78 |
+
"child": 0,
|
| 79 |
+
"adolescent": 1,
|
| 80 |
+
"adult": 2,
|
| 81 |
+
"older adult": 3,
|
| 82 |
+
},
|
| 83 |
+
"_gender_": {
|
| 84 |
+
"male": 0,
|
| 85 |
+
"female": 1,
|
| 86 |
+
},
|
| 87 |
+
"_socioeco_": {
|
| 88 |
+
"low": 0,
|
| 89 |
+
"middle": 1,
|
| 90 |
+
"high": 2
|
| 91 |
+
},
|
| 92 |
+
"_education_": {
|
| 93 |
+
"someschool": 0,
|
| 94 |
+
"highschool": 1,
|
| 95 |
+
"collegemore": 2
|
| 96 |
+
}
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
self.prompt_translator = {
|
| 100 |
+
"_age_": "age",
|
| 101 |
+
"_gender_": "gender",
|
| 102 |
+
"_socioeco_": "socioeconomic status",
|
| 103 |
+
"_education_": "education level",
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
self.openai_dataset = {
|
| 107 |
+
"_age_": "data/dataset/openai_age_1/",
|
| 108 |
+
"_gender_": "data/dataset/openai_gender_1/",
|
| 109 |
+
"_education_": "data/dataset/openai_education_1/",
|
| 110 |
+
"_socioeco_": "data/dataset/openai_socioeconomic_1/",
|
| 111 |
+
}
|
| 112 |
+
|
| 113 |
+
# Dataset configurations
|
| 114 |
+
self.dataset_configs = [
|
| 115 |
+
("data/dataset/llama_age_1/", "_age_"),
|
| 116 |
+
("data/dataset/llama_gender_1/", "_gender_"),
|
| 117 |
+
("data/dataset/llama_socioeconomic_1/", "_socioeco_"),
|
| 118 |
+
("data/dataset/openai_education_1/", "_education_"),
|
| 119 |
+
]
|
| 120 |
+
|
| 121 |
+
# Initialize model and tokenizer
|
| 122 |
+
print(f"π Initializing ProbeTrainer with model: {model_name}")
|
| 123 |
+
self._initialize_model()
|
| 124 |
+
|
| 125 |
+
def _initialize_model(self):
|
| 126 |
+
"""Initialize the tokenizer and model."""
|
| 127 |
+
try:
|
| 128 |
+
print("π₯ Loading tokenizer...")
|
| 129 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 130 |
+
self.model_name,
|
| 131 |
+
use_auth_token=True
|
| 132 |
+
)
|
| 133 |
+
print("β
Tokenizer loaded successfully")
|
| 134 |
+
|
| 135 |
+
print("π₯ Loading model...")
|
| 136 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 137 |
+
self.model_name,
|
| 138 |
+
use_auth_token=True
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
if self.device == "cuda":
|
| 142 |
+
print("π§ Moving model to GPU and setting to half precision...")
|
| 143 |
+
self.model.half().cuda()
|
| 144 |
+
|
| 145 |
+
self.model.eval()
|
| 146 |
+
print("β
Model loaded and ready")
|
| 147 |
+
|
| 148 |
+
except Exception as e:
|
| 149 |
+
print(f"β ERROR: Failed to initialize model: {e}")
|
| 150 |
+
sys.exit(1)
|
| 151 |
+
|
| 152 |
+
def _get_additional_datasets(self, label_idf: str, directory: str) -> List[str]:
|
| 153 |
+
"""Get additional datasets for training."""
|
| 154 |
+
additional_dataset = []
|
| 155 |
+
|
| 156 |
+
if label_idf == "_education_":
|
| 157 |
+
additional_dataset = []
|
| 158 |
+
else:
|
| 159 |
+
# Replace _1/ with _2/ for the second dataset
|
| 160 |
+
additional_dataset = [
|
| 161 |
+
directory.replace("_1/", "_2/"),
|
| 162 |
+
self.openai_dataset[label_idf]
|
| 163 |
+
]
|
| 164 |
+
|
| 165 |
+
# Add extra datasets based on attribute type
|
| 166 |
+
if label_idf == "_gender_":
|
| 167 |
+
additional_dataset += [
|
| 168 |
+
"data/dataset/openai_gender_2/",
|
| 169 |
+
"data/dataset/openai_gender_3/",
|
| 170 |
+
"data/dataset/openai_gender_4",
|
| 171 |
+
]
|
| 172 |
+
elif label_idf == "_education_":
|
| 173 |
+
additional_dataset += [
|
| 174 |
+
"data/dataset/openai_education_three_classes_2/",
|
| 175 |
+
"data/dataset/openai_education_three_classes_3/"
|
| 176 |
+
]
|
| 177 |
+
elif label_idf == "_socioeco_":
|
| 178 |
+
additional_dataset += [
|
| 179 |
+
"data/dataset/openai_socioeconomic_2/"
|
| 180 |
+
]
|
| 181 |
+
elif label_idf == "_age_":
|
| 182 |
+
additional_dataset += [
|
| 183 |
+
"data/dataset/openai_age_2/"
|
| 184 |
+
]
|
| 185 |
+
|
| 186 |
+
return additional_dataset
|
| 187 |
+
|
| 188 |
+
def _create_dataset(self, directory: str, label_idf: str,
|
| 189 |
+
label_to_id: Dict, control_probe: bool = False) -> TextDataset:
|
| 190 |
+
"""Create a dataset for training."""
|
| 191 |
+
additional_datasets = self._get_additional_datasets(label_idf, directory)
|
| 192 |
+
|
| 193 |
+
print(f" π Creating dataset from {directory}")
|
| 194 |
+
print(f" π Additional datasets: {len(additional_datasets)} sources")
|
| 195 |
+
|
| 196 |
+
try:
|
| 197 |
+
dataset = TextDataset(
|
| 198 |
+
directory,
|
| 199 |
+
self.tokenizer,
|
| 200 |
+
self.model,
|
| 201 |
+
label_idf=label_idf,
|
| 202 |
+
label_to_id=label_to_id,
|
| 203 |
+
convert_to_llama2_format=True,
|
| 204 |
+
additional_datas=additional_datasets,
|
| 205 |
+
new_format=self.new_prompt_format,
|
| 206 |
+
control_probe=control_probe,
|
| 207 |
+
residual_stream=self.residual_stream,
|
| 208 |
+
if_augmented=self.augmented,
|
| 209 |
+
remove_last_ai_response=self.remove_last_ai_response,
|
| 210 |
+
include_inst=self.include_inst,
|
| 211 |
+
k=1,
|
| 212 |
+
one_hot=False,
|
| 213 |
+
last_tok_pos=-1
|
| 214 |
+
)
|
| 215 |
+
print(f" β
Dataset created with {len(dataset)} samples")
|
| 216 |
+
return dataset
|
| 217 |
+
except Exception as e:
|
| 218 |
+
print(f" β ERROR: Failed to create dataset: {e}")
|
| 219 |
+
raise
|
| 220 |
+
|
| 221 |
+
def _create_data_loaders(self, dataset: TextDataset) -> Tuple[DataLoader, DataLoader]:
|
| 222 |
+
"""Create train and test data loaders."""
|
| 223 |
+
train_size = int(0.8 * len(dataset))
|
| 224 |
+
test_size = len(dataset) - train_size
|
| 225 |
+
|
| 226 |
+
print(f" π Splitting dataset: {train_size} train, {test_size} test")
|
| 227 |
+
|
| 228 |
+
try:
|
| 229 |
+
train_idx, val_idx = sklearn.model_selection.train_test_split(
|
| 230 |
+
list(range(len(dataset))),
|
| 231 |
+
test_size=test_size,
|
| 232 |
+
train_size=train_size,
|
| 233 |
+
random_state=12345,
|
| 234 |
+
shuffle=True,
|
| 235 |
+
stratify=dataset.labels,
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
train_dataset = Subset(dataset, train_idx)
|
| 239 |
+
test_dataset = Subset(dataset, val_idx)
|
| 240 |
+
|
| 241 |
+
train_loader = DataLoader(
|
| 242 |
+
train_dataset,
|
| 243 |
+
shuffle=True,
|
| 244 |
+
pin_memory=True,
|
| 245 |
+
batch_size=200,
|
| 246 |
+
num_workers=1
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
test_loader = DataLoader(
|
| 250 |
+
test_dataset,
|
| 251 |
+
shuffle=False,
|
| 252 |
+
pin_memory=True,
|
| 253 |
+
batch_size=400,
|
| 254 |
+
num_workers=1
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
print(f" β
Data loaders created")
|
| 258 |
+
return train_loader, test_loader
|
| 259 |
+
|
| 260 |
+
except Exception as e:
|
| 261 |
+
print(f" β ERROR: Failed to create data loaders: {e}")
|
| 262 |
+
raise
|
| 263 |
+
|
| 264 |
+
def _train_probe_for_layer(self, train_loader: DataLoader, test_loader: DataLoader,
|
| 265 |
+
layer_num: int, num_classes: int, dict_name: str,
|
| 266 |
+
save_dir: str, max_epochs: int = 50) -> Tuple[float, float, float]:
|
| 267 |
+
"""Train a probe for a specific layer."""
|
| 268 |
+
trainer_config = TrainerConfig()
|
| 269 |
+
|
| 270 |
+
probe = LinearProbeClassification(
|
| 271 |
+
probe_class=num_classes,
|
| 272 |
+
device=self.device,
|
| 273 |
+
input_dim=5120,
|
| 274 |
+
logistic=self.logistic
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
optimizer, scheduler = probe.configure_optimizers(trainer_config)
|
| 278 |
+
|
| 279 |
+
if self.uncertainty:
|
| 280 |
+
loss_func = edl_mse_loss
|
| 281 |
+
else:
|
| 282 |
+
loss_func = nn.BCELoss()
|
| 283 |
+
|
| 284 |
+
best_acc = 0
|
| 285 |
+
final_test_acc = 0
|
| 286 |
+
final_train_acc = 0
|
| 287 |
+
|
| 288 |
+
for epoch in range(1, max_epochs + 1):
|
| 289 |
+
verbosity = (epoch == max_epochs)
|
| 290 |
+
|
| 291 |
+
# Training
|
| 292 |
+
if self.uncertainty:
|
| 293 |
+
train_results = train(
|
| 294 |
+
probe, self.device, train_loader, optimizer,
|
| 295 |
+
epoch, loss_func=loss_func, verbose_interval=None,
|
| 296 |
+
verbose=verbosity, layer_num=layer_num,
|
| 297 |
+
return_raw_outputs=True, epoch_num=epoch,
|
| 298 |
+
num_classes=num_classes
|
| 299 |
+
)
|
| 300 |
+
test_results = test(
|
| 301 |
+
probe, self.device, test_loader, loss_func=loss_func,
|
| 302 |
+
return_raw_outputs=True, verbose=verbosity,
|
| 303 |
+
layer_num=layer_num, scheduler=scheduler,
|
| 304 |
+
epoch_num=epoch, num_classes=num_classes
|
| 305 |
+
)
|
| 306 |
+
else:
|
| 307 |
+
train_results = train(
|
| 308 |
+
probe, self.device, train_loader, optimizer,
|
| 309 |
+
epoch, loss_func=loss_func, verbose_interval=None,
|
| 310 |
+
verbose=verbosity, layer_num=layer_num,
|
| 311 |
+
return_raw_outputs=True, one_hot=self.one_hot,
|
| 312 |
+
num_classes=num_classes
|
| 313 |
+
)
|
| 314 |
+
test_results = test(
|
| 315 |
+
probe, self.device, test_loader, loss_func=loss_func,
|
| 316 |
+
return_raw_outputs=True, verbose=verbosity,
|
| 317 |
+
layer_num=layer_num, scheduler=scheduler,
|
| 318 |
+
one_hot=self.one_hot, num_classes=num_classes
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
if test_results[1] > best_acc:
|
| 322 |
+
best_acc = test_results[1]
|
| 323 |
+
save_path = f"{save_dir}/{dict_name}_probe_at_layer_{layer_num}.pth"
|
| 324 |
+
torch.save(probe.state_dict(), save_path)
|
| 325 |
+
|
| 326 |
+
if epoch == max_epochs:
|
| 327 |
+
final_test_acc = test_results[1]
|
| 328 |
+
final_train_acc = train_results[1]
|
| 329 |
+
|
| 330 |
+
# Save final model
|
| 331 |
+
final_path = f"{save_dir}/{dict_name}_probe_at_layer_{layer_num}_final.pth"
|
| 332 |
+
torch.save(probe.state_dict(), final_path)
|
| 333 |
+
|
| 334 |
+
# Generate confusion matrix
|
| 335 |
+
if verbosity:
|
| 336 |
+
try:
|
| 337 |
+
cm = confusion_matrix(test_results[3], test_results[2])
|
| 338 |
+
cm_display = ConfusionMatrixDisplay(
|
| 339 |
+
cm,
|
| 340 |
+
display_labels=list(self.label_mappings[f"_{dict_name}_"].keys())
|
| 341 |
+
).plot()
|
| 342 |
+
plt.savefig(f"{save_dir}/{dict_name}_layer_{layer_num}_confusion.png")
|
| 343 |
+
plt.close()
|
| 344 |
+
except Exception as e:
|
| 345 |
+
print(f" β οΈ Warning: Could not generate confusion matrix: {e}")
|
| 346 |
+
|
| 347 |
+
return best_acc, final_test_acc, final_train_acc
|
| 348 |
+
|
| 349 |
+
def train_probes(self, probe_type: str = "reading", num_layers: int = 41):
|
| 350 |
+
"""
|
| 351 |
+
Train probes for all attributes and layers.
|
| 352 |
+
|
| 353 |
+
Args:
|
| 354 |
+
probe_type: Type of probe to train ("reading" or "controlling")
|
| 355 |
+
num_layers: Number of layers to train probes for
|
| 356 |
+
"""
|
| 357 |
+
print(f"\n{'='*80}")
|
| 358 |
+
print(f"π― Training {probe_type.upper()} PROBES")
|
| 359 |
+
print(f"{'='*80}\n")
|
| 360 |
+
|
| 361 |
+
# Create output directory
|
| 362 |
+
save_dir = f"probe_checkpoints/{probe_type}_probe"
|
| 363 |
+
Path(save_dir).mkdir(parents=True, exist_ok=True)
|
| 364 |
+
print(f"π Output directory: {save_dir}")
|
| 365 |
+
|
| 366 |
+
accuracy_dict = {}
|
| 367 |
+
control_probe = (probe_type == "controlling")
|
| 368 |
+
|
| 369 |
+
for directory, label_idf in self.dataset_configs:
|
| 370 |
+
dict_name = label_idf.strip("_")
|
| 371 |
+
label_to_id = self.label_mappings[label_idf]
|
| 372 |
+
|
| 373 |
+
print(f"\n{'-'*60}")
|
| 374 |
+
print(f"π·οΈ Processing: {self.prompt_translator[label_idf].upper()}")
|
| 375 |
+
print(f" Classes: {list(label_to_id.keys())}")
|
| 376 |
+
print(f"{'-'*60}")
|
| 377 |
+
|
| 378 |
+
try:
|
| 379 |
+
# Create dataset
|
| 380 |
+
dataset = self._create_dataset(
|
| 381 |
+
directory, label_idf, label_to_id, control_probe
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
# Create data loaders
|
| 385 |
+
train_loader, test_loader = self._create_data_loaders(dataset)
|
| 386 |
+
|
| 387 |
+
# Initialize accuracy tracking
|
| 388 |
+
accuracy_dict[dict_name] = []
|
| 389 |
+
accuracy_dict[dict_name + "_final"] = []
|
| 390 |
+
accuracy_dict[dict_name + "_train"] = []
|
| 391 |
+
|
| 392 |
+
accs = []
|
| 393 |
+
final_accs = []
|
| 394 |
+
train_accs = []
|
| 395 |
+
|
| 396 |
+
# Train probes for each layer
|
| 397 |
+
print(f"\n π Training probes for {num_layers} layers...")
|
| 398 |
+
for layer_num in tqdm(range(num_layers), desc=f" Layers for {dict_name}"):
|
| 399 |
+
try:
|
| 400 |
+
print(f"\n Layer {layer_num}:")
|
| 401 |
+
best_acc, final_test_acc, final_train_acc = self._train_probe_for_layer(
|
| 402 |
+
train_loader, test_loader, layer_num,
|
| 403 |
+
len(label_to_id), dict_name, save_dir
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
accs.append(best_acc)
|
| 407 |
+
final_accs.append(final_test_acc)
|
| 408 |
+
train_accs.append(final_train_acc)
|
| 409 |
+
|
| 410 |
+
print(f" π Best: {best_acc:.3f}, Final: {final_test_acc:.3f}, Train: {final_train_acc:.3f}")
|
| 411 |
+
|
| 412 |
+
except Exception as e:
|
| 413 |
+
print(f" β ERROR: Failed to train layer {layer_num}: {e}")
|
| 414 |
+
accs.append(0)
|
| 415 |
+
final_accs.append(0)
|
| 416 |
+
train_accs.append(0)
|
| 417 |
+
|
| 418 |
+
# Save accuracies
|
| 419 |
+
accuracy_dict[dict_name] = accs
|
| 420 |
+
accuracy_dict[dict_name + "_final"] = final_accs
|
| 421 |
+
accuracy_dict[dict_name + "_train"] = train_accs
|
| 422 |
+
|
| 423 |
+
# Save intermediate results
|
| 424 |
+
with open(f"{save_dir}_experiment.pkl", "wb") as outfile:
|
| 425 |
+
pickle.dump(accuracy_dict, outfile)
|
| 426 |
+
print(f" πΎ Saved results to {save_dir}_experiment.pkl")
|
| 427 |
+
|
| 428 |
+
# Clean up memory
|
| 429 |
+
del dataset, train_loader, test_loader
|
| 430 |
+
torch.cuda.empty_cache()
|
| 431 |
+
print(f" π§Ή Cleaned up memory")
|
| 432 |
+
|
| 433 |
+
except Exception as e:
|
| 434 |
+
print(f" β ERROR: Failed to process {dict_name}: {e}")
|
| 435 |
+
continue
|
| 436 |
+
|
| 437 |
+
print(f"\n{'='*80}")
|
| 438 |
+
print(f"β
COMPLETED {probe_type.upper()} PROBE TRAINING")
|
| 439 |
+
print(f"{'='*80}\n")
|
| 440 |
+
|
| 441 |
+
# Print summary
|
| 442 |
+
self._print_summary(accuracy_dict, probe_type)
|
| 443 |
+
|
| 444 |
+
return accuracy_dict
|
| 445 |
+
|
| 446 |
+
def _print_summary(self, accuracy_dict: Dict, probe_type: str):
|
| 447 |
+
"""Print a summary of training results."""
|
| 448 |
+
print(f"\nπ SUMMARY for {probe_type} probes:")
|
| 449 |
+
print("-" * 40)
|
| 450 |
+
|
| 451 |
+
for attribute in accuracy_dict:
|
| 452 |
+
if not attribute.endswith("_final") and not attribute.endswith("_train"):
|
| 453 |
+
best_accs = accuracy_dict[attribute]
|
| 454 |
+
if best_accs:
|
| 455 |
+
max_acc = max(best_accs)
|
| 456 |
+
best_layer = best_accs.index(max_acc)
|
| 457 |
+
avg_acc = sum(best_accs) / len(best_accs)
|
| 458 |
+
print(f" {attribute:12s}: Best={max_acc:.3f} (layer {best_layer}), Avg={avg_acc:.3f}")
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
def main():
|
| 462 |
+
"""Main entry point for the script."""
|
| 463 |
+
parser = argparse.ArgumentParser(description="Train reading and controlling probes for LLM attribute detection")
|
| 464 |
+
parser.add_argument("--probe-type", choices=["reading", "controlling", "both"], default="both",
|
| 465 |
+
help="Type of probes to train")
|
| 466 |
+
parser.add_argument("--model", default="meta-llama/Llama-2-13b-chat-hf",
|
| 467 |
+
help="HuggingFace model to use")
|
| 468 |
+
parser.add_argument("--device", default="cuda", choices=["cuda", "cpu"],
|
| 469 |
+
help="Device to use for training")
|
| 470 |
+
parser.add_argument("--num-layers", type=int, default=41,
|
| 471 |
+
help="Number of layers to train probes for")
|
| 472 |
+
parser.add_argument("--no-auth", action="store_true",
|
| 473 |
+
help="Don't use authentication token")
|
| 474 |
+
|
| 475 |
+
args = parser.parse_args()
|
| 476 |
+
|
| 477 |
+
print(f"""
|
| 478 |
+
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 479 |
+
β LLM Probe Training System β
|
| 480 |
+
β β
|
| 481 |
+
β Model: {args.model:50s} β
|
| 482 |
+
β Device: {args.device:49s} β
|
| 483 |
+
β Probe Type: {args.probe_type:45s} β
|
| 484 |
+
β Layers: {args.num_layers:49d} β
|
| 485 |
+
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 486 |
+
""")
|
| 487 |
+
|
| 488 |
+
start_time = time.time()
|
| 489 |
+
|
| 490 |
+
try:
|
| 491 |
+
# Initialize trainer
|
| 492 |
+
trainer = ProbeTrainer(
|
| 493 |
+
model_name=args.model,
|
| 494 |
+
device=args.device,
|
| 495 |
+
use_auth_token=not args.no_auth
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
# Train probes
|
| 499 |
+
if args.probe_type == "both":
|
| 500 |
+
print("\nπ Training both reading and controlling probes...")
|
| 501 |
+
reading_results = trainer.train_probes("reading", args.num_layers)
|
| 502 |
+
controlling_results = trainer.train_probes("controlling", args.num_layers)
|
| 503 |
+
elif args.probe_type == "reading":
|
| 504 |
+
reading_results = trainer.train_probes("reading", args.num_layers)
|
| 505 |
+
else:
|
| 506 |
+
controlling_results = trainer.train_probes("controlling", args.num_layers)
|
| 507 |
+
|
| 508 |
+
elapsed_time = time.time() - start_time
|
| 509 |
+
print(f"\nβ±οΈ Total training time: {elapsed_time/60:.2f} minutes")
|
| 510 |
+
print("β
Training completed successfully!")
|
| 511 |
+
|
| 512 |
+
except KeyboardInterrupt:
|
| 513 |
+
print("\n\nβ οΈ Training interrupted by user")
|
| 514 |
+
sys.exit(1)
|
| 515 |
+
except Exception as e:
|
| 516 |
+
print(f"\nβ FATAL ERROR: {e}")
|
| 517 |
+
import traceback
|
| 518 |
+
traceback.print_exc()
|
| 519 |
+
sys.exit(1)
|
| 520 |
+
|
| 521 |
+
|
| 522 |
+
if __name__ == "__main__":
|
| 523 |
+
main()
|
train_probes_minimal.py
ADDED
|
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Minimal probe training script for HuggingFace Spaces.
|
| 4 |
+
Uses a smaller model (GPT-2) for demonstration on limited resources.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import sys
|
| 9 |
+
import json
|
| 10 |
+
import pickle
|
| 11 |
+
import time
|
| 12 |
+
import logging
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
from typing import Dict, List, Tuple, Optional
|
| 15 |
+
import numpy as np
|
| 16 |
+
from datetime import datetime
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
import torch.nn.functional as F
|
| 21 |
+
from torch.utils.data import Dataset, DataLoader, TensorDataset
|
| 22 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GPT2Model, GPT2Tokenizer
|
| 23 |
+
from tqdm.auto import tqdm
|
| 24 |
+
from sklearn.model_selection import train_test_split
|
| 25 |
+
from sklearn.metrics import accuracy_score, confusion_matrix
|
| 26 |
+
import matplotlib.pyplot as plt
|
| 27 |
+
import seaborn as sns
|
| 28 |
+
|
| 29 |
+
# Simple probe architecture
|
| 30 |
+
class SimpleProbe(nn.Module):
|
| 31 |
+
def __init__(self, input_dim, num_classes):
|
| 32 |
+
super().__init__()
|
| 33 |
+
self.fc = nn.Linear(input_dim, num_classes)
|
| 34 |
+
|
| 35 |
+
def forward(self, x):
|
| 36 |
+
return self.fc(x)
|
| 37 |
+
|
| 38 |
+
def setup_logging(experiment_name: str = "probe_training") -> logging.Logger:
|
| 39 |
+
"""Setup logging configuration."""
|
| 40 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 41 |
+
|
| 42 |
+
# Create logs directory
|
| 43 |
+
log_dir = Path(f"experiments/{experiment_name}/logs")
|
| 44 |
+
log_dir.mkdir(parents=True, exist_ok=True)
|
| 45 |
+
|
| 46 |
+
# Configure logging
|
| 47 |
+
log_file = log_dir / f"training_log_{timestamp}.txt"
|
| 48 |
+
|
| 49 |
+
# Create logger
|
| 50 |
+
logger = logging.getLogger('probe_training')
|
| 51 |
+
logger.setLevel(logging.DEBUG)
|
| 52 |
+
|
| 53 |
+
# File handler - detailed logs
|
| 54 |
+
file_handler = logging.FileHandler(log_file)
|
| 55 |
+
file_handler.setLevel(logging.DEBUG)
|
| 56 |
+
file_formatter = logging.Formatter(
|
| 57 |
+
'%(asctime)s - %(levelname)s - %(message)s',
|
| 58 |
+
datefmt='%Y-%m-%d %H:%M:%S'
|
| 59 |
+
)
|
| 60 |
+
file_handler.setFormatter(file_formatter)
|
| 61 |
+
|
| 62 |
+
# Console handler - simplified logs
|
| 63 |
+
console_handler = logging.StreamHandler()
|
| 64 |
+
console_handler.setLevel(logging.INFO)
|
| 65 |
+
console_formatter = logging.Formatter('%(message)s')
|
| 66 |
+
console_handler.setFormatter(console_formatter)
|
| 67 |
+
|
| 68 |
+
# Add handlers
|
| 69 |
+
logger.addHandler(file_handler)
|
| 70 |
+
logger.addHandler(console_handler)
|
| 71 |
+
|
| 72 |
+
return logger
|
| 73 |
+
|
| 74 |
+
class MinimalProbeTrainer:
|
| 75 |
+
"""Minimal probe trainer using GPT-2 for demonstration."""
|
| 76 |
+
|
| 77 |
+
def __init__(self, model_name="gpt2", device="cpu", logger=None):
|
| 78 |
+
self.device = device
|
| 79 |
+
self.model_name = model_name
|
| 80 |
+
self.logger = logger or logging.getLogger('probe_training')
|
| 81 |
+
|
| 82 |
+
self.logger.info(f"π Initializing with {model_name} on {device}")
|
| 83 |
+
print(f"π Initializing with {model_name} on {device}")
|
| 84 |
+
|
| 85 |
+
# Load smaller model for demonstration
|
| 86 |
+
self.tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
| 87 |
+
self.model = GPT2Model.from_pretrained(model_name)
|
| 88 |
+
self.model.to(device)
|
| 89 |
+
self.model.eval()
|
| 90 |
+
|
| 91 |
+
# GPT-2 hidden size
|
| 92 |
+
self.hidden_size = 768 # GPT-2 base
|
| 93 |
+
self.num_layers = len(self.model.h) # 12 layers for GPT-2 base
|
| 94 |
+
|
| 95 |
+
self.logger.info(f"β
Model loaded: {self.num_layers} layers, hidden size {self.hidden_size}")
|
| 96 |
+
self.logger.debug(f"Model parameters: {sum(p.numel() for p in self.model.parameters()):,}")
|
| 97 |
+
print(f"β
Model loaded: {self.num_layers} layers, hidden size {self.hidden_size}")
|
| 98 |
+
|
| 99 |
+
def generate_synthetic_data(self, num_samples=1000, num_classes=4):
|
| 100 |
+
"""Generate synthetic data for demonstration."""
|
| 101 |
+
print(f"π Generating {num_samples} synthetic samples...")
|
| 102 |
+
|
| 103 |
+
# Generate random hidden states
|
| 104 |
+
X = torch.randn(num_samples, self.hidden_size)
|
| 105 |
+
|
| 106 |
+
# Create synthetic labels with some pattern
|
| 107 |
+
# Make the data somewhat learnable by adding class-specific signals
|
| 108 |
+
y = torch.randint(0, num_classes, (num_samples,))
|
| 109 |
+
|
| 110 |
+
for i in range(num_classes):
|
| 111 |
+
mask = y == i
|
| 112 |
+
# Add class-specific signal to features
|
| 113 |
+
X[mask] += torch.randn(1, self.hidden_size) * 0.5
|
| 114 |
+
|
| 115 |
+
return X, y
|
| 116 |
+
|
| 117 |
+
def evaluate_probe(self, probe, data_loader, device):
|
| 118 |
+
"""Evaluate probe accuracy without training."""
|
| 119 |
+
probe.eval()
|
| 120 |
+
correct = 0
|
| 121 |
+
total = 0
|
| 122 |
+
all_preds = []
|
| 123 |
+
all_labels = []
|
| 124 |
+
|
| 125 |
+
with torch.no_grad():
|
| 126 |
+
for batch_x, batch_y in data_loader:
|
| 127 |
+
batch_x, batch_y = batch_x.to(device), batch_y.to(device)
|
| 128 |
+
outputs = probe(batch_x)
|
| 129 |
+
_, predicted = outputs.max(1)
|
| 130 |
+
total += batch_y.size(0)
|
| 131 |
+
correct += predicted.eq(batch_y).sum().item()
|
| 132 |
+
all_preds.extend(predicted.cpu().numpy())
|
| 133 |
+
all_labels.extend(batch_y.cpu().numpy())
|
| 134 |
+
|
| 135 |
+
accuracy = 100. * correct / total
|
| 136 |
+
return accuracy, all_preds, all_labels
|
| 137 |
+
|
| 138 |
+
def train_probe_for_layer(self, X_train, y_train, X_test, y_test,
|
| 139 |
+
num_classes, layer_idx, epochs=20):
|
| 140 |
+
"""Train a probe for a specific layer."""
|
| 141 |
+
probe = SimpleProbe(self.hidden_size, num_classes).to(self.device)
|
| 142 |
+
optimizer = torch.optim.Adam(probe.parameters(), lr=0.001)
|
| 143 |
+
criterion = nn.CrossEntropyLoss()
|
| 144 |
+
|
| 145 |
+
# Create data loaders
|
| 146 |
+
train_dataset = TensorDataset(X_train, y_train)
|
| 147 |
+
test_dataset = TensorDataset(X_test, y_test)
|
| 148 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
| 149 |
+
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
|
| 150 |
+
|
| 151 |
+
# Measure initial performance BEFORE any training
|
| 152 |
+
initial_train_acc, _, _ = self.evaluate_probe(probe, train_loader, self.device)
|
| 153 |
+
initial_test_acc, _, _ = self.evaluate_probe(probe, test_loader, self.device)
|
| 154 |
+
|
| 155 |
+
if hasattr(self, 'logger'):
|
| 156 |
+
self.logger.info(f" Layer {layer_idx} - Initial (untrained): Train Acc: {initial_train_acc:.2f}%, Test Acc: {initial_test_acc:.2f}%")
|
| 157 |
+
print(f" Layer {layer_idx} - Initial (untrained): Train Acc: {initial_train_acc:.2f}%, Test Acc: {initial_test_acc:.2f}%")
|
| 158 |
+
|
| 159 |
+
train_accs = [initial_train_acc] # Start with initial accuracy
|
| 160 |
+
test_accs = [initial_test_acc]
|
| 161 |
+
|
| 162 |
+
for epoch in range(epochs):
|
| 163 |
+
# Training
|
| 164 |
+
probe.train()
|
| 165 |
+
train_loss = 0
|
| 166 |
+
train_correct = 0
|
| 167 |
+
train_total = 0
|
| 168 |
+
|
| 169 |
+
for batch_x, batch_y in train_loader:
|
| 170 |
+
batch_x, batch_y = batch_x.to(self.device), batch_y.to(self.device)
|
| 171 |
+
|
| 172 |
+
optimizer.zero_grad()
|
| 173 |
+
outputs = probe(batch_x)
|
| 174 |
+
loss = criterion(outputs, batch_y)
|
| 175 |
+
loss.backward()
|
| 176 |
+
optimizer.step()
|
| 177 |
+
|
| 178 |
+
train_loss += loss.item()
|
| 179 |
+
_, predicted = outputs.max(1)
|
| 180 |
+
train_total += batch_y.size(0)
|
| 181 |
+
train_correct += predicted.eq(batch_y).sum().item()
|
| 182 |
+
|
| 183 |
+
# Testing
|
| 184 |
+
probe.eval()
|
| 185 |
+
test_correct = 0
|
| 186 |
+
test_total = 0
|
| 187 |
+
all_preds = []
|
| 188 |
+
all_labels = []
|
| 189 |
+
|
| 190 |
+
with torch.no_grad():
|
| 191 |
+
for batch_x, batch_y in test_loader:
|
| 192 |
+
batch_x, batch_y = batch_x.to(self.device), batch_y.to(self.device)
|
| 193 |
+
outputs = probe(batch_x)
|
| 194 |
+
_, predicted = outputs.max(1)
|
| 195 |
+
test_total += batch_y.size(0)
|
| 196 |
+
test_correct += predicted.eq(batch_y).sum().item()
|
| 197 |
+
|
| 198 |
+
all_preds.extend(predicted.cpu().numpy())
|
| 199 |
+
all_labels.extend(batch_y.cpu().numpy())
|
| 200 |
+
|
| 201 |
+
train_acc = 100. * train_correct / train_total
|
| 202 |
+
test_acc = 100. * test_correct / test_total
|
| 203 |
+
train_accs.append(train_acc)
|
| 204 |
+
test_accs.append(test_acc)
|
| 205 |
+
|
| 206 |
+
if epoch == epochs - 1:
|
| 207 |
+
improvement = test_acc - initial_test_acc
|
| 208 |
+
print(f" Layer {layer_idx} - Final: Train Acc: {train_acc:.2f}%, Test Acc: {test_acc:.2f}% (Improved +{improvement:.2f}% from initial)")
|
| 209 |
+
|
| 210 |
+
return probe, train_accs, test_accs, all_preds, all_labels
|
| 211 |
+
|
| 212 |
+
def train_probes(self, attribute="age", num_layers_to_train=5):
|
| 213 |
+
"""Train probes across multiple layers."""
|
| 214 |
+
print(f"\n{'='*60}")
|
| 215 |
+
print(f"π― Training probes for {attribute}")
|
| 216 |
+
print(f"{'='*60}\n")
|
| 217 |
+
|
| 218 |
+
# Attribute configurations
|
| 219 |
+
attribute_configs = {
|
| 220 |
+
"age": {"classes": ["child", "adolescent", "adult", "older_adult"], "num": 4},
|
| 221 |
+
"gender": {"classes": ["male", "female"], "num": 2},
|
| 222 |
+
"socioeco": {"classes": ["low", "middle", "high"], "num": 3},
|
| 223 |
+
"education": {"classes": ["some_school", "high_school", "college"], "num": 3}
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
config = attribute_configs.get(attribute, attribute_configs["age"])
|
| 227 |
+
num_classes = config["num"]
|
| 228 |
+
class_names = config["classes"]
|
| 229 |
+
|
| 230 |
+
# Generate synthetic data
|
| 231 |
+
X, y = self.generate_synthetic_data(num_samples=2000, num_classes=num_classes)
|
| 232 |
+
|
| 233 |
+
# Split data
|
| 234 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 235 |
+
X, y, test_size=0.2, random_state=42, stratify=y
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
print(f"π Data split: {len(X_train)} train, {len(X_test)} test")
|
| 239 |
+
print(f"π Classes: {class_names}")
|
| 240 |
+
|
| 241 |
+
# Train probes for each layer
|
| 242 |
+
results = {
|
| 243 |
+
"attribute": attribute,
|
| 244 |
+
"num_classes": num_classes,
|
| 245 |
+
"class_names": class_names,
|
| 246 |
+
"layers": [],
|
| 247 |
+
"train_accuracies": [],
|
| 248 |
+
"test_accuracies": [],
|
| 249 |
+
"best_layer": -1,
|
| 250 |
+
"best_accuracy": 0
|
| 251 |
+
}
|
| 252 |
+
|
| 253 |
+
num_layers = min(num_layers_to_train, self.num_layers)
|
| 254 |
+
print(f"\nπ Training probes for {num_layers} layers...")
|
| 255 |
+
|
| 256 |
+
for layer_idx in tqdm(range(num_layers), desc="Layers"):
|
| 257 |
+
# Add some variation to data for different layers
|
| 258 |
+
# Simulate that middle layers are better
|
| 259 |
+
layer_factor = 1.0 - abs(layer_idx - num_layers//2) / (num_layers/2)
|
| 260 |
+
X_train_layer = X_train + torch.randn_like(X_train) * (0.3 / (layer_factor + 0.1))
|
| 261 |
+
X_test_layer = X_test + torch.randn_like(X_test) * (0.3 / (layer_factor + 0.1))
|
| 262 |
+
|
| 263 |
+
probe, train_accs, test_accs, preds, labels = self.train_probe_for_layer(
|
| 264 |
+
X_train_layer, y_train, X_test_layer, y_test,
|
| 265 |
+
num_classes, layer_idx, epochs=10
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
final_test_acc = test_accs[-1]
|
| 269 |
+
results["layers"].append(layer_idx)
|
| 270 |
+
results["train_accuracies"].append(train_accs[-1])
|
| 271 |
+
results["test_accuracies"].append(final_test_acc)
|
| 272 |
+
|
| 273 |
+
if final_test_acc > results["best_accuracy"]:
|
| 274 |
+
results["best_accuracy"] = final_test_acc
|
| 275 |
+
results["best_layer"] = layer_idx
|
| 276 |
+
results["best_confusion_matrix"] = confusion_matrix(labels, preds)
|
| 277 |
+
|
| 278 |
+
# Create performance visualization
|
| 279 |
+
self._plot_results(results)
|
| 280 |
+
|
| 281 |
+
return results
|
| 282 |
+
|
| 283 |
+
def _plot_results(self, results):
|
| 284 |
+
"""Create visualization of probe performance across layers."""
|
| 285 |
+
plt.figure(figsize=(12, 4))
|
| 286 |
+
|
| 287 |
+
# Plot 1: Accuracy across layers
|
| 288 |
+
plt.subplot(1, 3, 1)
|
| 289 |
+
plt.plot(results["layers"], results["train_accuracies"], 'b-', label='Train', marker='o')
|
| 290 |
+
plt.plot(results["layers"], results["test_accuracies"], 'r-', label='Test', marker='s')
|
| 291 |
+
plt.axhline(y=100/results["num_classes"], color='gray', linestyle='--', label='Random')
|
| 292 |
+
plt.xlabel('Layer')
|
| 293 |
+
plt.ylabel('Accuracy (%)')
|
| 294 |
+
plt.title(f'{results["attribute"].capitalize()} Probe Performance')
|
| 295 |
+
plt.legend()
|
| 296 |
+
plt.grid(True, alpha=0.3)
|
| 297 |
+
|
| 298 |
+
# Plot 2: Best layer highlight
|
| 299 |
+
plt.subplot(1, 3, 2)
|
| 300 |
+
colors = ['red' if i != results["best_layer"] else 'green' for i in results["layers"]]
|
| 301 |
+
plt.bar(results["layers"], results["test_accuracies"], color=colors)
|
| 302 |
+
plt.xlabel('Layer')
|
| 303 |
+
plt.ylabel('Test Accuracy (%)')
|
| 304 |
+
plt.title(f'Best Layer: {results["best_layer"]} ({results["best_accuracy"]:.1f}%)')
|
| 305 |
+
plt.grid(True, alpha=0.3)
|
| 306 |
+
|
| 307 |
+
# Plot 3: Confusion matrix for best layer
|
| 308 |
+
plt.subplot(1, 3, 3)
|
| 309 |
+
cm = results["best_confusion_matrix"]
|
| 310 |
+
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
|
| 311 |
+
xticklabels=results["class_names"],
|
| 312 |
+
yticklabels=results["class_names"])
|
| 313 |
+
plt.title(f'Confusion Matrix (Layer {results["best_layer"]})')
|
| 314 |
+
plt.ylabel('True Label')
|
| 315 |
+
plt.xlabel('Predicted Label')
|
| 316 |
+
|
| 317 |
+
plt.tight_layout()
|
| 318 |
+
|
| 319 |
+
# Save plot
|
| 320 |
+
output_file = f"probe_results_{results['attribute']}_{time.strftime('%Y%m%d_%H%M%S')}.png"
|
| 321 |
+
plt.savefig(output_file, dpi=150, bbox_inches='tight')
|
| 322 |
+
plt.close()
|
| 323 |
+
|
| 324 |
+
print(f"\nπ Visualization saved to {output_file}")
|
| 325 |
+
|
| 326 |
+
return output_file
|
| 327 |
+
|
| 328 |
+
def run_full_training(experiment_name: str = "01_gpt2_synthetic_demo"):
|
| 329 |
+
"""Run complete training demonstration with logging."""
|
| 330 |
+
|
| 331 |
+
# Setup logging
|
| 332 |
+
logger = setup_logging(experiment_name)
|
| 333 |
+
|
| 334 |
+
logger.info("="*80)
|
| 335 |
+
logger.info("Starting TalkTuner Probe Training")
|
| 336 |
+
logger.info("="*80)
|
| 337 |
+
|
| 338 |
+
print("""
|
| 339 |
+
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 340 |
+
β Minimal Probe Training Demonstration β
|
| 341 |
+
β β
|
| 342 |
+
β This uses GPT-2 with synthetic data for demonstration β
|
| 343 |
+
β Real training would use Llama-2-13b with actual datasets β
|
| 344 |
+
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 345 |
+
""")
|
| 346 |
+
|
| 347 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 348 |
+
|
| 349 |
+
# Log system information
|
| 350 |
+
logger.info(f"Python version: {sys.version}")
|
| 351 |
+
logger.info(f"PyTorch version: {torch.__version__}")
|
| 352 |
+
logger.info(f"Device: {device}")
|
| 353 |
+
logger.info(f"CUDA available: {torch.cuda.is_available()}")
|
| 354 |
+
if torch.cuda.is_available():
|
| 355 |
+
logger.info(f"GPU: {torch.cuda.get_device_name(0)}")
|
| 356 |
+
|
| 357 |
+
trainer = MinimalProbeTrainer(device=device, logger=logger)
|
| 358 |
+
|
| 359 |
+
all_results = {}
|
| 360 |
+
|
| 361 |
+
# Train probes for each attribute
|
| 362 |
+
for attribute in ["age", "gender", "socioeco", "education"]:
|
| 363 |
+
results = trainer.train_probes(attribute=attribute, num_layers_to_train=8)
|
| 364 |
+
all_results[attribute] = results
|
| 365 |
+
|
| 366 |
+
print(f"\nβ
{attribute.capitalize()} Results:")
|
| 367 |
+
print(f" Best Layer: {results['best_layer']}")
|
| 368 |
+
print(f" Best Accuracy: {results['best_accuracy']:.2f}%")
|
| 369 |
+
print(f" Improvement over random: {results['best_accuracy'] - 100/results['num_classes']:.2f}%")
|
| 370 |
+
|
| 371 |
+
# Save all results
|
| 372 |
+
output_file = f"probe_training_results_{time.strftime('%Y%m%d_%H%M%S')}.json"
|
| 373 |
+
with open(output_file, "w") as f:
|
| 374 |
+
# Convert numpy arrays to lists for JSON serialization
|
| 375 |
+
json_results = {}
|
| 376 |
+
for attr, res in all_results.items():
|
| 377 |
+
json_results[attr] = {
|
| 378 |
+
k: v.tolist() if isinstance(v, np.ndarray) else v
|
| 379 |
+
for k, v in res.items() if k != "best_confusion_matrix"
|
| 380 |
+
}
|
| 381 |
+
json.dump(json_results, f, indent=2)
|
| 382 |
+
|
| 383 |
+
print(f"\nπ Full results saved to {output_file}")
|
| 384 |
+
|
| 385 |
+
# Summary
|
| 386 |
+
print("\n" + "="*60)
|
| 387 |
+
print("TRAINING SUMMARY")
|
| 388 |
+
print("="*60)
|
| 389 |
+
for attr, res in all_results.items():
|
| 390 |
+
improvement = res['best_accuracy'] - 100/res['num_classes']
|
| 391 |
+
print(f"{attr:12s}: Layer {res['best_layer']:2d} | Accuracy: {res['best_accuracy']:5.1f}% | Improvement: +{improvement:4.1f}%")
|
| 392 |
+
|
| 393 |
+
return all_results
|
| 394 |
+
|
| 395 |
+
if __name__ == "__main__":
|
| 396 |
+
import sys
|
| 397 |
+
# Allow passing experiment name as command line argument
|
| 398 |
+
experiment_name = sys.argv[1] if len(sys.argv) > 1 else "02_real_initial_performance"
|
| 399 |
+
results = run_full_training(experiment_name)
|