Lineage-graph-accelerator / SETUP_GUIDE.md
aamanlamba's picture
first version - lineage extractor
60ac2eb
# Setup Guide for Lineage Graph Extractor Space
This guide will help you deploy the Lineage Graph Extractor as a Hugging Face Space.
## Prerequisites
1. A Hugging Face account (create one at https://huggingface.co/join)
2. API credentials for the services you want to integrate:
- Anthropic API key (for Claude AI)
- Google Cloud credentials (for BigQuery, optional)
- Other service credentials as needed
## Step 1: Create a New Space
1. Go to https://huggingface.co/spaces
2. Click "Create new Space"
3. Fill in the details:
- **Name**: `lineage-graph-extractor` (or your preferred name)
- **License**: MIT (or your choice)
- **SDK**: Gradio
- **Hardware**: CPU Basic (free tier) or upgrade for better performance
- **Visibility**: Public or Private (your choice)
## Step 2: Upload Files
You need to upload these files to your Space repository:
### Required Files
- `app.py` - Main application file
- `requirements.txt` - Python dependencies
- `README.md` - Space description and documentation
### Optional Files
- `.env.example` - Example environment variables
- `SETUP_GUIDE.md` - This setup guide
### Upload Methods
**Option A: Web Interface**
1. Click "Files and versions" in your Space
2. Click "Add file" → "Upload files"
3. Upload all the files from `/hf_space/` directory
**Option B: Git**
```bash
# Clone your Space repository
git clone https://huggingface.co/spaces/YOUR_USERNAME/lineage-graph-extractor
cd lineage-graph-extractor
# Copy files
cp /path/to/hf_space/* .
# Commit and push
git add .
git commit -m "Initial commit: Lineage Graph Extractor"
git push
```
## Step 3: Configure Secrets
For security, store sensitive credentials as Space secrets:
1. Go to your Space settings
2. Click "Repository secrets"
3. Add the following secrets:
### Required Secrets
- `ANTHROPIC_API_KEY`: Your Claude API key from https://console.anthropic.com/
### Optional Secrets (based on features you need)
- `GOOGLE_CLOUD_PROJECT`: Your GCP project ID
- `GOOGLE_APPLICATION_CREDENTIALS_JSON`: Service account JSON (as a string)
- `MCP_SERVER_URL`: MCP server endpoint (if using MCP)
- `MCP_API_KEY`: MCP authentication key
### Accessing Secrets in Code
Update `app.py` to read from environment variables:
```python
import os
ANTHROPIC_API_KEY = os.environ.get("ANTHROPIC_API_KEY")
GOOGLE_CLOUD_PROJECT = os.environ.get("GOOGLE_CLOUD_PROJECT")
```
## Step 4: Integrate the Agent Backend
The current `app.py` is a template. You need to connect it to your actual agent:
### Option A: Use Anthropic SDK
```python
import anthropic
client = anthropic.Anthropic(api_key=os.environ.get("ANTHROPIC_API_KEY"))
def extract_lineage_from_text(metadata_text, source_type, viz_format):
# Call your agent with metadata_parser and graph_visualizer workers
response = client.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=4000,
messages=[{
"role": "user",
"content": f"Extract lineage from this {source_type} metadata and visualize as {viz_format}: {metadata_text}"
}]
)
return response.content[0].text, "Processed successfully"
```
### Option B: Use Agent API Endpoint
If you have your agent deployed as an API:
```python
import requests
def extract_lineage_from_text(metadata_text, source_type, viz_format):
response = requests.post(
"https://your-agent-api.com/extract",
json={
"metadata": metadata_text,
"source_type": source_type,
"format": viz_format
}
)
return response.json()["visualization"], response.json()["summary"]
```
### Option C: Bundle Agent Files
Include your agent configuration directly in the Space:
1. Copy `/memories/` directory to Space
2. Copy `/subagents/` if needed
3. Import and use agent logic in `app.py`
## Step 5: Test Your Space
1. Once deployed, Hugging Face will automatically build and run your Space
2. Check the "Logs" tab for any errors
3. Test each feature:
- Text/File metadata extraction
- BigQuery integration (if configured)
- URL/API fetching
## Step 6: Customize and Enhance
### Add Authentication
For production use, add authentication:
```python
demo.launch(auth=("username", "password"))
```
Or integrate with Hugging Face authentication:
```python
demo.launch(auth_required=True)
```
### Improve Error Handling
Add try-catch blocks and user-friendly error messages:
```python
try:
result = extract_lineage_from_text(metadata_text, source_type, viz_format)
return result
except Exception as e:
return "", f"Error: {str(e)}"
```
### Add More Features
- File upload support
- Export visualizations as images
- History/session management
- Batch processing
## Troubleshooting
### Space won't start
- Check logs for error messages
- Verify all dependencies in `requirements.txt`
- Ensure Python version compatibility
### API errors
- Verify secrets are correctly set
- Check API key validity and permissions
- Review rate limits
### Slow performance
- Upgrade to better hardware (CPU or GPU)
- Optimize metadata parsing logic
- Add caching for repeated queries
## Security Best Practices
1. **Never commit API keys** to the repository
2. **Use Space secrets** for all credentials
3. **Validate user input** to prevent injection attacks
4. **Use read-only credentials** when possible
5. **Add rate limiting** to prevent abuse
6. **Enable authentication** for production use
## Getting Help
- Hugging Face Spaces docs: https://huggingface.co/docs/hub/spaces
- Gradio documentation: https://gradio.app/docs
- Anthropic API docs: https://docs.anthropic.com/
## Next Steps
1. Test the Space thoroughly
2. Share with your team or community
3. Collect feedback and iterate
4. Consider upgrading hardware for production workloads
5. Add analytics to track usage
---
**Need help?** Check the Hugging Face community forums or reach out to support.