Delete app.py
Browse files
app.py
DELETED
|
@@ -1,106 +0,0 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
import gradio as gr
|
| 3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
-
import torch
|
| 5 |
-
|
| 6 |
-
class ModelProcessor:
|
| 7 |
-
def __init__(self, repo_id="HuggingFaceTB/cosmo-1b"):
|
| 8 |
-
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 9 |
-
self.tokenizer = AutoTokenizer.from_pretrained(repo_id, use_fast=True)
|
| 10 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
| 11 |
-
repo_id, torch_dtype=torch.float16, device_map={"": self.device}, trust_remote_code=True
|
| 12 |
-
)
|
| 13 |
-
self.model.eval()
|
| 14 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 15 |
-
|
| 16 |
-
@torch.inference_mode()
|
| 17 |
-
def process_data_and_compute_statistics(self, prompt):
|
| 18 |
-
tokens = self.tokenizer(
|
| 19 |
-
prompt, return_tensors="pt", truncation=True, max_length=512
|
| 20 |
-
).to(self.model.device)
|
| 21 |
-
outputs = self.model(tokens["input_ids"])
|
| 22 |
-
logits = outputs.logits
|
| 23 |
-
shifted_labels = tokens["input_ids"][..., 1:].contiguous()
|
| 24 |
-
shifted_logits = logits[..., :-1, :].contiguous()
|
| 25 |
-
shifted_probs = torch.softmax(shifted_logits, dim=-1)
|
| 26 |
-
shifted_log_probs = torch.log_softmax(shifted_logits, dim=-1)
|
| 27 |
-
entropy = -torch.sum(shifted_probs * shifted_log_probs, dim=-1).squeeze()
|
| 28 |
-
logits_flat = shifted_logits.view(-1, shifted_logits.size(-1))
|
| 29 |
-
labels_flat = shifted_labels.view(-1)
|
| 30 |
-
probabilities_flat = torch.softmax(logits_flat, dim=-1)
|
| 31 |
-
true_class_probabilities = probabilities_flat.gather(
|
| 32 |
-
1, labels_flat.unsqueeze(1)
|
| 33 |
-
).squeeze(1)
|
| 34 |
-
nll = -torch.log(
|
| 35 |
-
true_class_probabilities.clamp(min=1e-9)
|
| 36 |
-
)
|
| 37 |
-
ranks = (
|
| 38 |
-
shifted_logits.argsort(dim=-1, descending=True)
|
| 39 |
-
== shifted_labels.unsqueeze(-1)
|
| 40 |
-
).nonzero()[:, -1]
|
| 41 |
-
if entropy.clamp(max=4).median() < 2.0:
|
| 42 |
-
return 1
|
| 43 |
-
return 1 if (ranks.clamp(max=4) * nll.clamp(max=4)).mean() < 5.2 else 0
|
| 44 |
-
|
| 45 |
-
processor = ModelProcessor()
|
| 46 |
-
|
| 47 |
-
@spaces.GPU(duration=180)
|
| 48 |
-
def detect(prompt):
|
| 49 |
-
prediction = processor.process_data_and_compute_statistics(prompt)
|
| 50 |
-
if prediction == 1:
|
| 51 |
-
return "<div class='output-text'>The text is likely <b>generated</b> by a language model.</div>"
|
| 52 |
-
else:
|
| 53 |
-
return "<div class='output-text'>The text is likely <b>not generated</b> by a language model.</div>"
|
| 54 |
-
|
| 55 |
-
with gr.Blocks(
|
| 56 |
-
css="""
|
| 57 |
-
.gradio-container {
|
| 58 |
-
max-width: 800px;
|
| 59 |
-
margin: 0 auto;
|
| 60 |
-
}
|
| 61 |
-
.gr-box {
|
| 62 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
| 63 |
-
padding: 20px;
|
| 64 |
-
border-radius: 4px;
|
| 65 |
-
}
|
| 66 |
-
.gr-button {
|
| 67 |
-
background-color: #007bff;
|
| 68 |
-
color: white;
|
| 69 |
-
padding: 10px 20px;
|
| 70 |
-
border-radius: 4px;
|
| 71 |
-
}
|
| 72 |
-
.gr-button:hover {
|
| 73 |
-
background-color: #0056b3;
|
| 74 |
-
}
|
| 75 |
-
.hyperlinks a {
|
| 76 |
-
margin-right: 10px;
|
| 77 |
-
}
|
| 78 |
-
.output-text {
|
| 79 |
-
text-align: center;
|
| 80 |
-
font-size: 24px;
|
| 81 |
-
font-weight: bold;
|
| 82 |
-
}
|
| 83 |
-
"""
|
| 84 |
-
) as demo:
|
| 85 |
-
with gr.Row():
|
| 86 |
-
with gr.Column(scale=3):
|
| 87 |
-
gr.Markdown("# ENTELL Model Detection - ChatGPTBots.net")
|
| 88 |
-
with gr.Column(scale=1):
|
| 89 |
-
gr.HTML(
|
| 90 |
-
"""
|
| 91 |
-
""",
|
| 92 |
-
elem_classes="hyperlinks",
|
| 93 |
-
)
|
| 94 |
-
with gr.Row():
|
| 95 |
-
with gr.Column():
|
| 96 |
-
prompt = gr.Textbox(
|
| 97 |
-
lines=8,
|
| 98 |
-
placeholder="Type your prompt here...",
|
| 99 |
-
label="Prompt",
|
| 100 |
-
)
|
| 101 |
-
submit_btn = gr.Button("Submit", variant="primary")
|
| 102 |
-
output = gr.HTML() # Changed to gr.HTML() to support custom HTML
|
| 103 |
-
|
| 104 |
-
submit_btn.click(fn=detect, inputs=prompt, outputs=output)
|
| 105 |
-
|
| 106 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|