Update app.py
Browse files
app.py
CHANGED
|
@@ -6,59 +6,40 @@ import torch
|
|
| 6 |
class ModelProcessor:
|
| 7 |
def __init__(self, repo_id="HuggingFaceTB/cosmo-1b"):
|
| 8 |
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 9 |
-
# Initialize the tokenizer
|
| 10 |
self.tokenizer = AutoTokenizer.from_pretrained(repo_id, use_fast=True)
|
| 11 |
-
|
| 12 |
-
# Initialize and configure the model
|
| 13 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 14 |
repo_id, torch_dtype=torch.float16, device_map={"": self.device}, trust_remote_code=True
|
| 15 |
)
|
| 16 |
-
self.model.eval()
|
| 17 |
-
|
| 18 |
-
# Set padding token as end-of-sequence token
|
| 19 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 20 |
|
| 21 |
@torch.inference_mode()
|
| 22 |
def process_data_and_compute_statistics(self, prompt):
|
| 23 |
-
# Tokenize the prompt and move to the device
|
| 24 |
tokens = self.tokenizer(
|
| 25 |
prompt, return_tensors="pt", truncation=True, max_length=512
|
| 26 |
).to(self.model.device)
|
| 27 |
-
|
| 28 |
-
# Get the model outputs and logits
|
| 29 |
outputs = self.model(tokens["input_ids"])
|
| 30 |
logits = outputs.logits
|
| 31 |
-
|
| 32 |
-
# Shift right to align with logits' prediction position
|
| 33 |
shifted_labels = tokens["input_ids"][..., 1:].contiguous()
|
| 34 |
shifted_logits = logits[..., :-1, :].contiguous()
|
| 35 |
-
|
| 36 |
-
# Calculate entropy
|
| 37 |
shifted_probs = torch.softmax(shifted_logits, dim=-1)
|
| 38 |
shifted_log_probs = torch.log_softmax(shifted_logits, dim=-1)
|
| 39 |
entropy = -torch.sum(shifted_probs * shifted_log_probs, dim=-1).squeeze()
|
| 40 |
-
|
| 41 |
-
# Flatten the logits and labels
|
| 42 |
logits_flat = shifted_logits.view(-1, shifted_logits.size(-1))
|
| 43 |
labels_flat = shifted_labels.view(-1)
|
| 44 |
-
|
| 45 |
-
# Calculate the negative log-likelihood loss
|
| 46 |
probabilities_flat = torch.softmax(logits_flat, dim=-1)
|
| 47 |
true_class_probabilities = probabilities_flat.gather(
|
| 48 |
1, labels_flat.unsqueeze(1)
|
| 49 |
).squeeze(1)
|
| 50 |
nll = -torch.log(
|
| 51 |
true_class_probabilities.clamp(min=1e-9)
|
| 52 |
-
)
|
| 53 |
-
|
| 54 |
ranks = (
|
| 55 |
shifted_logits.argsort(dim=-1, descending=True)
|
| 56 |
== shifted_labels.unsqueeze(-1)
|
| 57 |
).nonzero()[:, -1]
|
| 58 |
-
|
| 59 |
if entropy.clamp(max=4).median() < 2.0:
|
| 60 |
return 1
|
| 61 |
-
|
| 62 |
return 1 if (ranks.clamp(max=4) * nll.clamp(max=4)).mean() < 5.2 else 0
|
| 63 |
|
| 64 |
processor = ModelProcessor()
|
|
@@ -67,9 +48,9 @@ processor = ModelProcessor()
|
|
| 67 |
def detect(prompt):
|
| 68 |
prediction = processor.process_data_and_compute_statistics(prompt)
|
| 69 |
if prediction == 1:
|
| 70 |
-
return "The text is likely
|
| 71 |
else:
|
| 72 |
-
return "The text is likely
|
| 73 |
|
| 74 |
with gr.Blocks(
|
| 75 |
css="""
|
|
@@ -118,7 +99,7 @@ with gr.Blocks(
|
|
| 118 |
label="Prompt",
|
| 119 |
)
|
| 120 |
submit_btn = gr.Button("Submit", variant="primary")
|
| 121 |
-
output = gr.
|
| 122 |
|
| 123 |
submit_btn.click(fn=detect, inputs=prompt, outputs=output)
|
| 124 |
|
|
|
|
| 6 |
class ModelProcessor:
|
| 7 |
def __init__(self, repo_id="HuggingFaceTB/cosmo-1b"):
|
| 8 |
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 9 |
self.tokenizer = AutoTokenizer.from_pretrained(repo_id, use_fast=True)
|
|
|
|
|
|
|
| 10 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 11 |
repo_id, torch_dtype=torch.float16, device_map={"": self.device}, trust_remote_code=True
|
| 12 |
)
|
| 13 |
+
self.model.eval()
|
|
|
|
|
|
|
| 14 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 15 |
|
| 16 |
@torch.inference_mode()
|
| 17 |
def process_data_and_compute_statistics(self, prompt):
|
|
|
|
| 18 |
tokens = self.tokenizer(
|
| 19 |
prompt, return_tensors="pt", truncation=True, max_length=512
|
| 20 |
).to(self.model.device)
|
|
|
|
|
|
|
| 21 |
outputs = self.model(tokens["input_ids"])
|
| 22 |
logits = outputs.logits
|
|
|
|
|
|
|
| 23 |
shifted_labels = tokens["input_ids"][..., 1:].contiguous()
|
| 24 |
shifted_logits = logits[..., :-1, :].contiguous()
|
|
|
|
|
|
|
| 25 |
shifted_probs = torch.softmax(shifted_logits, dim=-1)
|
| 26 |
shifted_log_probs = torch.log_softmax(shifted_logits, dim=-1)
|
| 27 |
entropy = -torch.sum(shifted_probs * shifted_log_probs, dim=-1).squeeze()
|
|
|
|
|
|
|
| 28 |
logits_flat = shifted_logits.view(-1, shifted_logits.size(-1))
|
| 29 |
labels_flat = shifted_labels.view(-1)
|
|
|
|
|
|
|
| 30 |
probabilities_flat = torch.softmax(logits_flat, dim=-1)
|
| 31 |
true_class_probabilities = probabilities_flat.gather(
|
| 32 |
1, labels_flat.unsqueeze(1)
|
| 33 |
).squeeze(1)
|
| 34 |
nll = -torch.log(
|
| 35 |
true_class_probabilities.clamp(min=1e-9)
|
| 36 |
+
)
|
|
|
|
| 37 |
ranks = (
|
| 38 |
shifted_logits.argsort(dim=-1, descending=True)
|
| 39 |
== shifted_labels.unsqueeze(-1)
|
| 40 |
).nonzero()[:, -1]
|
|
|
|
| 41 |
if entropy.clamp(max=4).median() < 2.0:
|
| 42 |
return 1
|
|
|
|
| 43 |
return 1 if (ranks.clamp(max=4) * nll.clamp(max=4)).mean() < 5.2 else 0
|
| 44 |
|
| 45 |
processor = ModelProcessor()
|
|
|
|
| 48 |
def detect(prompt):
|
| 49 |
prediction = processor.process_data_and_compute_statistics(prompt)
|
| 50 |
if prediction == 1:
|
| 51 |
+
return "<div class='output-text'>The text is likely <b>generated</b> by a language model.</div>"
|
| 52 |
else:
|
| 53 |
+
return "<div class='output-text'>The text is likely <b>not generated</b> by a language model.</div>"
|
| 54 |
|
| 55 |
with gr.Blocks(
|
| 56 |
css="""
|
|
|
|
| 99 |
label="Prompt",
|
| 100 |
)
|
| 101 |
submit_btn = gr.Button("Submit", variant="primary")
|
| 102 |
+
output = gr.HTML() # Changed to gr.HTML() to support custom HTML
|
| 103 |
|
| 104 |
submit_btn.click(fn=detect, inputs=prompt, outputs=output)
|
| 105 |
|