File size: 38,091 Bytes
401431d adde8bb ff124f3 adde8bb ff124f3 adde8bb ff124f3 adde8bb ff124f3 4f702c0 adde8bb 6a3fc00 adde8bb 6a3fc00 adde8bb 6a3fc00 adde8bb 6a3fc00 adde8bb ff124f3 adde8bb ff124f3 3c4d351 ff124f3 adde8bb ff124f3 3c4d351 adde8bb 78d0258 c77907e adde8bb c77907e adde8bb c77907e adde8bb c77907e 855e442 c77907e adde8bb c77907e adde8bb c77907e adde8bb c77907e 855e442 c77907e adde8bb c77907e adde8bb ff124f3 adde8bb 3c4d351 adde8bb 3c4d351 adde8bb 3c4d351 adde8bb 3c4d351 adde8bb 3c4d351 adde8bb 3c4d351 adde8bb 3c4d351 a1b15c2 3c4d351 adde8bb 3c4d351 ff124f3 adde8bb 3c4d351 a1b15c2 3c4d351 ff124f3 3c4d351 ff124f3 3c4d351 ff124f3 3c4d351 ff124f3 adde8bb 3c4d351 adde8bb 3c4d351 adde8bb 3c4d351 adde8bb 3c4d351 adde8bb 3ce32f8 3c4d351 adde8bb 3c4d351 adde8bb 78d0258 6a3fc00 adde8bb 78d0258 adde8bb 3c4d351 adde8bb 78d0258 adde8bb 3c4d351 adde8bb 3c4d351 98c0852 3c4d351 98c0852 adde8bb 98c0852 adde8bb 98c0852 adde8bb 3c4d351 3ce32f8 adde8bb 3ce32f8 adde8bb 3ce32f8 adde8bb 98c0852 adde8bb 98c0852 ff124f3 adde8bb 3c4d351 6a3fc00 ff124f3 855e442 ff124f3 adde8bb ff124f3 78d0258 adde8bb ff124f3 adde8bb ff124f3 855e442 ff124f3 3c4d351 ff124f3 3c4d351 adde8bb ff124f3 adde8bb ff124f3 adde8bb 6a3fc00 ff124f3 ac57e9c ff124f3 adde8bb ff124f3 adde8bb 855e442 adde8bb ff124f3 adde8bb ff124f3 adde8bb ff124f3 adde8bb ff124f3 855e442 ff124f3 adde8bb ff124f3 adde8bb ff124f3 adde8bb ff124f3 adde8bb ff124f3 adde8bb ff124f3 855e442 ff124f3 adde8bb ff124f3 adde8bb ff124f3 adde8bb 3c4d351 adde8bb ff124f3 855e442 ff124f3 adde8bb 3c4d351 adde8bb ff124f3 855e442 adde8bb 3c4d351 855e442 adde8bb 3c4d351 adde8bb 3c4d351 adde8bb 3c4d351 adde8bb 3c4d351 adde8bb ff124f3 adde8bb c77907e ff124f3 3c4d351 ff124f3 adde8bb ff124f3 adde8bb ff124f3 adde8bb ff124f3 adde8bb c77907e adde8bb 401431d ff124f3 78d0258 adde8bb ff124f3 adde8bb 4f5eb89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 |
"""
Advanced 3D Reconstruction from Single Images with Responsible AI Features
"""
import gradio as gr
import numpy as np
import torch
from PIL import Image
from transformers import GLPNForDepthEstimation, GLPNImageProcessor
import open3d as o3d
import plotly.graph_objects as go
import matplotlib.pyplot as plt
import io
import json
import time
from pathlib import Path
import tempfile
import zipfile
import hashlib
from datetime import datetime
# ============================================================================
# RESPONSIBLE AI GUIDELINES
# ============================================================================
RESPONSIBLE_AI_NOTICE = """
## β οΈ Responsible Use Guidelines
### Privacy & Consent
- **Do not upload images containing identifiable people without their explicit consent**
- **Do not use for surveillance, tracking, or monitoring individuals**
- Facial features may be reconstructed in 3D - consider privacy implications
- Remove metadata (EXIF) that may contain location or personal information
### Ethical Use
- This tool is for **educational, research, and creative purposes only**
- **Prohibited uses:**
- Creating deepfakes or misleading 3D content
- Unauthorized documentation of private property
- Circumventing security systems
- Generating 3D models for harassment or stalking
- Commercial use without proper rights to source images
### Limitations & Bias
- Models trained primarily on indoor Western architecture
- May perform poorly on non-Western architectural styles
- Scale is relative, not absolute - not suitable for precision measurements
- Single viewpoint limitations - occluded areas are inferred, not captured
### Data Usage
- Images are processed locally during your session
- No images are stored or transmitted to external servers
- Processing logs contain only technical metrics, no image content
- You retain all rights to your uploaded images and generated 3D models
**By using this tool, you agree to these responsible use guidelines.**
"""
# ============================================================================
# PRIVACY & SAFETY FUNCTIONS
# ============================================================================
def check_image_safety(image):
"""Basic safety checks for uploaded images"""
warnings = []
width, height = image.size
if width * height > 10_000_000:
warnings.append("β οΈ Very large image - consider resizing to improve processing speed")
aspect_ratio = max(width, height) / min(width, height)
if aspect_ratio > 3:
warnings.append("β οΈ Unusual aspect ratio detected - ensure image doesn't contain unintended content")
try:
exif = image.getexif()
if exif:
has_gps = any(k for k in exif.keys() if k in [34853, 0x8825])
if has_gps:
warnings.append("β οΈ GPS location data detected in image - consider removing EXIF data for privacy")
except:
pass
return True, "\n".join(warnings) if warnings else None
def generate_session_id():
"""Generate anonymous session ID for logging"""
return hashlib.sha256(str(datetime.now()).encode()).hexdigest()[:16]
def content_policy_check(image):
"""Check if image content violates usage policies"""
width, height = image.size
if width < 100 or height < 100:
return False, "Image too small - minimum 100x100 pixels required for meaningful reconstruction"
return True, None
# ============================================================================
# MODEL LOADING
# ============================================================================
print("Loading GLPN model (lightweight)...")
try:
glpn_processor = GLPNImageProcessor.from_pretrained("vinvino02/glpn-nyu")
glpn_model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-nyu")
print("β GLPN model loaded successfully!")
except Exception as e:
print(f"Error loading model: {e}")
glpn_processor = None
glpn_model = None
# DPT will be loaded on demand
dpt_model = None
dpt_processor = None
# ============================================================================
# CORE 3D RECONSTRUCTION
# ============================================================================
def process_image(image, model_choice="GLPN (Recommended)", visualization_type="mesh"):
"""Optimized processing pipeline"""
def _generate_quality_assessment(metrics):
assessment = []
outlier_pct = (metrics['outliers_removed'] / metrics['initial_points']) * 100
if outlier_pct < 5:
assessment.append("Very clean depth estimation")
elif outlier_pct < 15:
assessment.append("Good depth quality")
else:
assessment.append("High noise in depth estimation")
if metrics['is_edge_manifold'] and metrics['is_vertex_manifold']:
assessment.append("Excellent topology")
elif metrics['is_vertex_manifold']:
assessment.append("Good local topology")
else:
assessment.append("Topology issues present")
if metrics['is_watertight']:
assessment.append("Watertight mesh - ready for 3D printing!")
else:
assessment.append("Not watertight - needs repair for 3D printing")
return "\n".join(f"- {item}" for item in assessment)
if glpn_model is None:
return None, None, None, "β Model failed to load. Please refresh the page.", None
try:
print("Starting reconstruction...")
# Preprocess
new_height = 480 if image.height > 480 else image.height
new_height -= (new_height % 32)
new_width = int(new_height * image.width / image.height)
diff = new_width % 32
new_width = new_width - diff if diff < 16 else new_width + (32 - diff)
new_size = (new_width, new_height)
image = image.resize(new_size, Image.LANCZOS)
# Depth estimation - select model
if model_choice == "GLPN (Recommended)":
processor = glpn_processor
model = glpn_model
else: # DPT (High Quality)
global dpt_model, dpt_processor
if dpt_model is None:
print("Loading DPT model (first time only)...")
from transformers import DPTForDepthEstimation, DPTImageProcessor
dpt_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
dpt_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
print("β DPT model loaded!")
processor = dpt_processor
model = dpt_model
inputs = processor(images=image, return_tensors="pt")
start_time = time.time()
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
depth_time = time.time() - start_time
# Process depth
pad = 16
output = predicted_depth.squeeze().cpu().numpy() * 1000.0
output = output[pad:-pad, pad:-pad]
image_cropped = image.crop((pad, pad, image.width - pad, image.height - pad))
depth_height, depth_width = output.shape
img_width, img_height = image_cropped.size
if depth_height != img_height or depth_width != img_width:
from scipy import ndimage
zoom_factors = (img_height / depth_height, img_width / depth_width)
output = ndimage.zoom(output, zoom_factors, order=1)
image = image_cropped
# Depth visualization
fig, ax = plt.subplots(1, 2, figsize=(14, 7))
ax[0].imshow(image)
ax[0].set_title('Original Image', fontsize=14, fontweight='bold')
ax[0].axis('off')
im = ax[1].imshow(output, cmap='plasma')
ax[1].set_title('Estimated Depth Map', fontsize=14, fontweight='bold')
ax[1].axis('off')
plt.colorbar(im, ax=ax[1], fraction=0.046, pad=0.04)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
buf.seek(0)
depth_viz = Image.open(buf)
plt.close()
# Point cloud generation
width, height = image.size
if output.shape != (height, width):
from scipy import ndimage
zoom_factors = (height / output.shape[0], width / output.shape[1])
output = ndimage.zoom(output, zoom_factors, order=1)
depth_image = (output * 255 / np.max(output)).astype(np.uint8)
image_array = np.array(image)
depth_o3d = o3d.geometry.Image(depth_image)
image_o3d = o3d.geometry.Image(image_array)
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
image_o3d, depth_o3d, convert_rgb_to_intensity=False
)
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
camera_intrinsic.set_intrinsics(width, height, 500, 500, width/2, height/2)
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic)
initial_points = len(pcd.points)
# Clean point cloud
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0)
pcd = pcd.select_by_index(ind)
outliers_removed = initial_points - len(pcd.points)
# Estimate normals
pcd.estimate_normals()
pcd.orient_normals_to_align_with_direction()
# Create mesh
mesh_start = time.time()
mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
pcd, depth=9, n_threads=1
)[0]
# Transfer colors
pcd_tree = o3d.geometry.KDTreeFlann(pcd)
mesh_colors = []
for vertex in mesh.vertices:
[_, idx, _] = pcd_tree.search_knn_vector_3d(vertex, 1)
mesh_colors.append(pcd.colors[idx[0]])
mesh.vertex_colors = o3d.utility.Vector3dVector(np.array(mesh_colors))
rotation = mesh.get_rotation_matrix_from_xyz((np.pi, 0, 0))
mesh.rotate(rotation, center=(0, 0, 0))
mesh_time = time.time() - mesh_start
# Metrics
mesh.compute_vertex_normals()
metrics = {
'model_used': model_choice,
'depth_estimation_time': f"{depth_time:.2f}s",
'mesh_reconstruction_time': f"{mesh_time:.2f}s",
'total_time': f"{depth_time + mesh_time:.2f}s",
'initial_points': initial_points,
'outliers_removed': outliers_removed,
'final_points': len(pcd.points),
'vertices': len(mesh.vertices),
'triangles': len(mesh.triangles),
'is_edge_manifold': mesh.is_edge_manifold(),
'is_vertex_manifold': mesh.is_vertex_manifold(),
'is_watertight': mesh.is_watertight(),
}
# Surface area
try:
surface_area = mesh.get_surface_area()
if surface_area > 0:
metrics['surface_area'] = float(surface_area)
else:
vertices = np.asarray(mesh.vertices)
triangles = np.asarray(mesh.triangles)
v0 = vertices[triangles[:, 0]]
v1 = vertices[triangles[:, 1]]
v2 = vertices[triangles[:, 2]]
cross = np.cross(v1 - v0, v2 - v0)
areas = 0.5 * np.linalg.norm(cross, axis=1)
metrics['surface_area'] = float(np.sum(areas))
except:
metrics['surface_area'] = "Unable to compute"
# Volume
try:
if mesh.is_watertight():
metrics['volume'] = float(mesh.get_volume())
else:
metrics['volume'] = None
except:
metrics['volume'] = None
# 3D visualization
points = np.asarray(pcd.points)
colors = np.asarray(pcd.colors)
if visualization_type == "point_cloud":
scatter = go.Scatter3d(
x=points[:, 0], y=points[:, 1], z=points[:, 2],
mode='markers',
marker=dict(
size=2,
color=['rgb({},{},{})'.format(int(r*255), int(g*255), int(b*255))
for r, g, b in colors],
),
name='Point Cloud'
)
plotly_fig = go.Figure(data=[scatter])
plotly_fig.update_layout(
scene=dict(
xaxis=dict(visible=False),
yaxis=dict(visible=False),
zaxis=dict(visible=False),
aspectmode='data'
),
height=700,
title="Point Cloud"
)
else: # mesh
vertices = np.asarray(mesh.vertices)
triangles = np.asarray(mesh.triangles)
if mesh.has_vertex_colors():
vertex_colors = np.asarray(mesh.vertex_colors)
colors_rgb = ['rgb({},{},{})'.format(int(r*255), int(g*255), int(b*255))
for r, g, b in vertex_colors]
mesh_trace = go.Mesh3d(
x=vertices[:, 0], y=vertices[:, 1], z=vertices[:, 2],
i=triangles[:, 0], j=triangles[:, 1], k=triangles[:, 2],
vertexcolor=colors_rgb,
opacity=0.95
)
else:
mesh_trace = go.Mesh3d(
x=vertices[:, 0], y=vertices[:, 1], z=vertices[:, 2],
i=triangles[:, 0], j=triangles[:, 1], k=triangles[:, 2],
color='lightblue',
opacity=0.9
)
plotly_fig = go.Figure(data=[mesh_trace])
plotly_fig.update_layout(
scene=dict(
xaxis=dict(visible=False),
yaxis=dict(visible=False),
zaxis=dict(visible=False),
aspectmode='data'
),
height=700,
title="3D Mesh"
)
# Export files
temp_dir = tempfile.mkdtemp()
pcd_path = Path(temp_dir) / "point_cloud.ply"
o3d.io.write_point_cloud(str(pcd_path), pcd)
mesh_path = Path(temp_dir) / "mesh.ply"
o3d.io.write_triangle_mesh(str(mesh_path), mesh)
mesh_obj_path = Path(temp_dir) / "mesh.obj"
o3d.io.write_triangle_mesh(str(mesh_obj_path), mesh)
mesh_stl_path = Path(temp_dir) / "mesh.stl"
o3d.io.write_triangle_mesh(str(mesh_stl_path), mesh)
metrics_path = Path(temp_dir) / "metrics.json"
with open(metrics_path, 'w') as f:
json.dump(metrics, f, indent=2, default=str)
zip_path = Path(temp_dir) / "reconstruction_complete.zip"
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
zipf.write(pcd_path, pcd_path.name)
zipf.write(mesh_path, mesh_path.name)
zipf.write(mesh_obj_path, mesh_obj_path.name)
zipf.write(mesh_stl_path, mesh_stl_path.name)
zipf.write(metrics_path, metrics_path.name)
assessment = _generate_quality_assessment(metrics)
report = f"""
## Reconstruction Complete!
### Performance
- **Processing Time**: {metrics['total_time']}
- **Points**: {metrics['final_points']:,}
- **Triangles**: {metrics['triangles']:,}
### Quality
- **Topology**: {'Good' if metrics['is_vertex_manifold'] else 'Issues'}
- **Watertight**: {'Yes' if metrics['is_watertight'] else 'No'}
### Assessment
{assessment}
**Download the complete package below!**
"""
return depth_viz, plotly_fig, str(zip_path), report, json.dumps(metrics, indent=2, default=str)
except Exception as e:
import traceback
return None, None, None, f"Error: {str(e)}\n\n{traceback.format_exc()}", None
def process_image_with_safeguards(image, model_choice="GLPN (Recommended)", visualization_type="mesh", consent_given=False):
"""Main processing with safeguards"""
session_id = generate_session_id()
if not consent_given:
return None, None, None, "**You must agree to the Responsible Use Guidelines first.**", None
if image is None:
return None, None, None, "Please upload an image first.", None
is_safe, safety_warning = check_image_safety(image)
passes_policy, policy_message = content_policy_check(image)
if not passes_policy:
return None, None, None, f"{policy_message}", None
try:
result = process_image(image, model_choice, visualization_type)
depth_viz, plotly_fig, zip_path, report, json_metrics = result
if safety_warning:
report = f"**Privacy Notice:**\n{safety_warning}\n\n{report}"
metrics = json.loads(json_metrics)
metrics['responsible_ai'] = {
'session_id': session_id,
'timestamp': datetime.now().isoformat(),
'consent_given': True
}
return depth_viz, plotly_fig, zip_path, report, json.dumps(metrics, indent=2)
except Exception as e:
return None, None, None, f"Error: {str(e)}", None
# ============================================================================
# GRADIO INTERFACE
# ============================================================================
with gr.Blocks(title="Responsible AI 3D Reconstruction", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# ποΈ 3D Reconstruction from Single Images
Transform 2D photographs into 3D spatial models
<div style="background-color: #fff3cd; border: 2px solid #ffc107; padding: 15px; border-radius: 5px; margin: 10px 0;">
<h3 style="color: #856404; margin-top: 0;">β οΈ Responsible Use Required</h3>
<p style="color: #856404; margin-bottom: 0;">This tool must be used ethically and legally. Review the guidelines in the <b>first tab</b>.</p>
</div>
""")
with gr.Tabs():
with gr.Tab("β οΈ Responsible Use (READ FIRST)"):
gr.Markdown(RESPONSIBLE_AI_NOTICE)
gr.Markdown("""
### Known Limitations & Biases
- Trained primarily on Western indoor architecture
- May underperform on non-Western styles
- Scale is relative, not absolute
- Single viewpoint captures only visible surfaces
""")
with gr.Tab("Reconstruction"):
consent_checkbox = gr.Checkbox(
label="**I have read and agree to the Responsible Use Guidelines**",
value=False
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
type="pil",
label="Upload Image",
sources=["upload", "clipboard"]
)
model_choice = gr.Radio(
choices=["GLPN (Recommended)", "DPT (High Quality)"],
value="GLPN (Recommended)",
label="Depth Estimation Model"
)
visualization_type = gr.Radio(
choices=["mesh", "point_cloud"],
value="mesh",
label="Visualization Type"
)
reconstruct_btn = gr.Button("Start Reconstruction", variant="primary", size="lg")
with gr.Column(scale=2):
depth_output = gr.Image(label="Depth Map")
viewer_3d = gr.Plot(label="Interactive 3D Viewer")
with gr.Row():
with gr.Column():
metrics_output = gr.Markdown(label="Report")
with gr.Column():
json_output = gr.Textbox(label="Metrics (JSON)", lines=8)
download_output = gr.File(label="Download Package (ZIP)")
reconstruct_btn.click(
fn=process_image_with_safeguards,
inputs=[input_image, model_choice, visualization_type, consent_checkbox],
outputs=[depth_output, viewer_3d, download_output, metrics_output, json_output]
)
with gr.Tab("Theory & Background"):
gr.Markdown("""
## About This Tool
This application demonstrates how artificial intelligence can convert single 2D photographs
into interactive 3D models automatically.
### What Makes This Special
**Traditional Approach:**
- Need special equipment (3D scanner, multiple cameras)
- Requires technical expertise
- Time-consuming process
- Expensive
**This AI Approach:**
- Works with any single photograph
- No special equipment needed
- Automatic processing
- Free and accessible
## The Technology
### AI Model Used: GLPN
**GLPN (Global-Local Path Networks)**
- Paper: Kim et al., CVPR 2022
- Optimized for: Indoor/outdoor architectural scenes
- Training: NYU Depth V2 (urban indoor environments)
- Best for: Building interiors, street-level views
- Speed: Fast (~0.3-2.5s)
### How It Works (Simplified)
1. **AI analyzes photo** β Recognizes objects, patterns, perspective
2. **Estimates distance** β Figures out what's close, what's far
3. **Creates 3D points** β Places colored dots in 3D space
4. **Builds surface** β Connects dots into smooth shape
### Spatial Data Pipeline
**1. Monocular Depth Estimation**
- Challenge: Extracting 3D spatial information from 2D photographs
- Application: Similar to photogrammetry but from single images
- Output: Relative depth maps for spatial analysis
**2. Point Cloud Generation**
- Creates 3D coordinate system (X, Y, Z) from pixels
- Each point: Spatial location + RGB color information
- Compatible with: GIS software, CAD tools, spatial databases
**3. 3D Mesh Generation**
- Creates continuous surface from discrete points
- Similar to: Digital terrain models (DTMs) for buildings
- Output formats: Compatible with ArcGIS, QGIS, SketchUp
### Quality Metrics Explained
- **Point Cloud Density**: Higher points = better spatial resolution
- **Geometric Accuracy**: Manifold checks ensure valid topology
- **Surface Continuity**: Watertight meshes = complete volume calculations
- **Data Fidelity**: Triangle count indicates level of detail
### Limitations for Geographic Applications
1. **Scale Ambiguity**: Requires ground control points for absolute measurements
2. **Single Viewpoint**: Cannot capture occluded facades or hidden spaces
3. **No Georeferencing**: Outputs in local coordinates, not global (lat/lon)
4. **Weather Dependent**: Best results with clear, well-lit conditions
### Comparison with Traditional Methods
**vs. Terrestrial Laser Scanning (TLS):**
- Much cheaper, faster, more accessible
- Lower accuracy, no absolute scale
**vs. Photogrammetry (Structure-from-Motion):**
- Works with single image, faster processing
- Less accurate, cannot resolve scale
**vs. LiDAR:**
- Much lower cost, consumer cameras sufficient
- Lower precision, no absolute measurements
## Reconstruction Pipeline (10 Steps)
1. **Image Preprocessing**: Resize to model requirements
2. **Depth Estimation**: Neural network inference
3. **Depth Visualization**: Create comparison images
4. **Point Cloud Generation**: Back-project using camera model
5. **Outlier Removal**: Statistical filtering
6. **Normal Estimation**: Surface orientation calculation
7. **Mesh Reconstruction**: Poisson surface reconstruction
8. **Quality Metrics**: Compute geometric measures
9. **3D Visualization**: Create interactive viewer
10. **File Export**: Generate multiple formats
### Key References
1. **Kim, D., et al. (2022)**. "Global-Local Path Networks for Monocular Depth Estimation
with Vertical CutDepth." *CVPR 2022*
2. **Kazhdan, M., et al. (2006)**. "Poisson Surface Reconstruction."
*Eurographics Symposium on Geometry Processing*
""")
with gr.Tab("Usage Guide"):
gr.Markdown("""
## How to Use This Application
### Step 1: Read Responsible Use Guidelines
- **REQUIRED**: Review the "Responsible Use" tab first
- Understand privacy implications
- Acknowledge model limitations and biases
- Ensure you have rights to use source images
### Step 2: Prepare Your Image
**Best Practices:**
- Remove EXIF metadata (GPS, timestamps) for privacy
- Ensure you have consent if image contains people
- Use well-lit, clear photographs
- Recommended resolution: 512-1024 pixels
- Indoor scenes work best
**Privacy Checklist:**
- [ ] No identifiable people (or consent obtained)
- [ ] No sensitive/private locations
- [ ] EXIF data removed
- [ ] You own rights to the image
### Step 3: Upload Image
- Click "Upload Image" area
- Select JPG, PNG, or BMP file
- **Note:** Webcam option removed for privacy protection
- You can also paste from clipboard
### Step 4: Check Consent Box
- Check "I have read and agree to Responsible Use Guidelines"
- This confirms you've reviewed ethical guidelines
- Processing won't start without consent
### Step 5: Choose Visualization
- **Mesh**: Solid 3D surface (recommended)
- **Point Cloud**: Individual 3D points with colors
### Step 6: Start Reconstruction
- Click "Start Reconstruction"
- Processing takes 10-60 seconds
- All processing is local (no cloud upload)
### Step 7: Explore Results
**Depth Map:**
- Yellow/Red = Farther objects
- Purple/Blue = Closer objects
- Shows AI's depth understanding
**3D Viewer:**
- Rotate: Click and drag
- Zoom: Scroll wheel
- Pan: Right-click and drag
- Reset: Double-click
**Metrics Report:**
- Processing performance
- Quality indicators
- Topology validation
### Step 8: Download Files
- ZIP package contains:
- Point cloud (PLY)
- Mesh (PLY, OBJ, STL)
- Quality metrics (JSON)
- All files include responsible AI metadata
## Viewing Downloaded 3D Files
### Free Software Options:
**MeshLab** (Recommended for beginners)
- Download: https://www.meshlab.net/
- Open PLY, OBJ, STL files
- Great for viewing and basic editing
**Blender** (For advanced users)
- Download: https://www.blender.org/
- Import β Wavefront (.obj) or PLY
- Full 3D modeling and rendering capabilities
**CloudCompare** (For point clouds)
- Download: https://www.cloudcompare.org/
- Best for analyzing point cloud data
- Measurement and analysis tools
**Online Viewers** (No installation)
- https://3dviewer.net/
- https://www.creators3d.com/online-viewer
- Just drag and drop your OBJ/PLY file
## Tips for Best Results
### DO:
- Use well-lit images
- Include depth cues (corners, edges)
- Indoor scenes work best
- Medium resolution (512-1024px)
- Remove personal metadata
- Obtain consent for people in images
### AVOID:
- Motion blur or low resolution
- Reflective surfaces (mirrors, glass)
- Images without consent
- Private property without permission
- Surveillance or monitoring purposes
- Heavy shadows or darkness
## Understanding the Metrics
### Point Cloud Statistics:
- **Initial Points**: Raw points generated from depth
- **Outliers Removed**: Noisy points filtered out (typically 5-15%)
- **Final Points**: Clean points used for mesh generation
### Mesh Quality Indicators:
- ** Edge Manifold**: Each edge connects exactly 2 faces (good topology)
- ** Vertex Manifold**: Clean vertex connections
- ** Watertight**: No holes, ready for 3D printing
- ** Marks**: Indicate potential issues (still usable, may need repair)
### Processing Times:
- **Depth Estimation**: 0.3-2.5s (GLPN model)
- **Mesh Reconstruction**: 2-10s (depends on point cloud size)
- **Total Time**: Usually 10-60 seconds
---
## Troubleshooting
**Problem: No output appears**
- Check browser console for errors
- Try refreshing the page
- Try a smaller/simpler image first
- Check that image uploaded successfully
**Problem: Mesh has holes or artifacts**
- This is normal for single-view reconstruction
- Hidden surfaces cannot be reconstructed
- Use mesh repair tools in MeshLab if needed
**Problem: Colors look wrong on mesh**
- Vertex color interpolation is approximate
- This is expected behavior
- Colors on point cloud are more accurate
**Problem: Processing is very slow**
- Use smaller images
- This is normal on CPU (GPU is much faster)
**Problem: "Not watertight" in metrics**
- Common for complex scenes
- Still usable for visualization
- For 3D printing: use mesh repair in MeshLab
""")
with gr.Tab(" Ethics & Impact"):
gr.Markdown("""
## Algorithmic Bias & Fairness
### Training Data Representation
**Geographic Bias:**
- Heavy representation: North America, Europe
- Underrepresented: Africa, South Asia, Pacific Islands
- Impact: Lower accuracy for non-Western architecture
**Architectural Style Bias:**
- Well-represented: Modern interiors, Western buildings
- Underrepresented: Traditional, vernacular, indigenous structures
- Impact: May misinterpret non-standard spatial layouts
**Socioeconomic Bias:**
- Training data skewed toward middle/upper-class interiors
- Limited representation of informal settlements
- May not generalize well to all socioeconomic contexts
### Potential Harms
** Privacy Violations:**
- Unauthorized 3D reconstruction of private spaces
- Creating models of individuals without consent
- Surveillance and tracking applications
** Misinformation:**
- Generating fake 3D evidence
- Manipulating spatial understanding
- Creating misleading visualizations
** Property Rights:**
- Unauthorized documentation of copyrighted designs
- Intellectual property theft
- Commercial exploitation without permission
### Harm Prevention
1. **Mandatory consent**: Require user acknowledgment
2. **Use case restriction**: Prohibit surveillance and deceptive uses
3. **Privacy protection**: Disable webcam, encourage EXIF removal
4. **Transparency**: Clear documentation of limitations
## Accountability & Governance
### User Responsibilities
As a user, you are responsible for:
- Ensuring lawful use of source images
- Obtaining necessary consents and permissions
- Respecting privacy and intellectual property
- Using outputs ethically and transparently
- Understanding and accounting for model biases
### Developer Responsibilities
This tool implements:
- Clear responsible use guidelines
- Privacy-protective design (no webcam, local processing)
- Bias documentation and transparency
- Prohibited use cases explicitly stated
## Future Directions
### Improving Fairness
- Train on more diverse geographic datasets
- Include underrepresented architectural styles
- Develop bias mitigation techniques
- Community-driven model evaluation
### Enhancing Privacy
- Face/person detection and redaction
- Automatic EXIF stripping
- Differential privacy techniques
""")
with gr.Tab(" Citation"):
gr.Markdown("""
## Academic Citation
### For GLPN Model:
```bibtex
@inproceedings{kim2022global,
title={Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth},
author={Kim, Doyeon and Ga, Woonghyun and Ahn, Pyungwhan and Joo, Donggyu and Chun, Sehwan and Kim, Junmo},
booktitle={CVPR},
year={2022}
}
```
### For Poisson Surface Reconstruction:
```bibtex
@inproceedings{kazhdan2006poisson,
title={Poisson Surface Reconstruction},
author={Kazhdan, Michael and Bolitho, Matthew and Hoppe, Hugues},
booktitle={Symposium on Geometry Processing},
year={2006}
}
```
## Open Source Components
This application is built with:
- **Transformers** (Hugging Face): Model inference framework
- **Open3D**: Point cloud and mesh processing
- **PyTorch**: Deep learning framework
- **Plotly**: Interactive 3D visualization
- **Gradio**: Web interface framework
- **NumPy** & **SciPy**: Numerical computing
- **Matplotlib**: Data visualization
- **Pillow (PIL)**: Image processing
## Model Credits
**GLPN Model:**
- Developed by: KAIST (Korea Advanced Institute of Science and Technology)
- Hosted by: Hugging Face (vinvino02/glpn-nyu)
- License: Apache 2.0
## Responsible AI Features
This implementation includes:
- Privacy-protective design (no webcam option)
- Mandatory consent acknowledgment
- Bias documentation and transparency
- Ethical use guidelines
""")
gr.Markdown("""
---
**Version:** 2.0 (Responsible AI Edition - Optimized)
**Last Updated:** 2025
**License:** Educational and Research Use
""")
if __name__ == "__main__":
print("="*60)
print("RESPONSIBLE AI 3D RECONSTRUCTION")
print("="*60)
print("β Lightweight model (GLPN only)")
print("β No webcam option")
print("β Local processing")
print("β Consent required")
print("="*60)
demo.launch(share=True) |