Spaces:
Sleeping
Sleeping
File size: 24,107 Bytes
79dbb99 13ec6bf 79dbb99 56780d5 79dbb99 56780d5 72e3f3c 56780d5 79dbb99 fa9ab75 79dbb99 fa9ab75 79dbb99 fa9ab75 13ec6bf 79dbb99 13ec6bf 79dbb99 fa9ab75 56780d5 79dbb99 56780d5 79dbb99 56780d5 f12886d fa9ab75 79dbb99 fa9ab75 79dbb99 56780d5 79dbb99 56780d5 fa9ab75 79dbb99 13ec6bf 56780d5 79dbb99 56780d5 79dbb99 56780d5 79dbb99 56780d5 79dbb99 56780d5 13ec6bf 79dbb99 56780d5 fa9ab75 79dbb99 56780d5 fa9ab75 79dbb99 56780d5 fa9ab75 79dbb99 fa9ab75 79dbb99 fa9ab75 79dbb99 fa9ab75 79dbb99 fa9ab75 13ec6bf 79dbb99 56780d5 79dbb99 56780d5 79dbb99 fa9ab75 79dbb99 13ec6bf 79dbb99 56780d5 79dbb99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
# streamlit_app.py
import os
import glob
import json
import time
import math
import re
from typing import List, Dict, Any, Tuple
import numpy as np
import streamlit as st
import PyPDF2
from dotenv import load_dotenv
from huggingface_hub import InferenceClient, login
from sentence_transformers import SentenceTransformer
from sklearn.feature_extraction.text import TfidfVectorizer
from heapq import nlargest
# FAISS (optional)
try:
import faiss
except Exception:
faiss = None
# =========================
# Page + env
# =========================
st.set_page_config(page_title="π Handbook Assistant", page_icon="π", layout="wide")
st.title("π USTP Student Handbook Assistant (2023 Edition)")
st.caption("This assistant answers only from the handbook. Place 'USTP Student Handbook 2023 Edition.pdf' in the same folder.")
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACEHUB_API_TOKEN")
hf_client = None
if HF_TOKEN:
try:
login(HF_TOKEN)
except Exception:
# login might be unnecessary depending on environment
pass
try:
hf_client = InferenceClient(token=HF_TOKEN)
except Exception as e:
st.warning(f"Could not init InferenceClient: {e}")
# =========================
# Sidebar configuration
# =========================
with st.sidebar:
st.header("βοΈ Settings")
model_options = {
"Qwen 2.5 14B Instruct (default)": "Qwen/Qwen2.5-14B-Instruct",
"Mistral 7B Instruct": "mistralai/Mistral-7B-Instruct-v0.3",
"Llama 3 8B Instruct": "meta-llama/Meta-Llama-3-8B-Instruct",
"Falcon 7B Instruct": "tiiuae/falcon-7b-instruct",
"Mixtral 8x7B Instruct": "mistralai/Mixtral-8x7B-Instruct-v0.1",
}
model_label = st.selectbox("Choose model", list(model_options.keys()), index=0)
DEFAULT_MODEL = model_options[model_label]
st.markdown("---")
similarity_threshold = st.slider("Similarity threshold", 0.30, 0.95, 0.62, 0.01)
top_k = st.slider("Top K retrieved chunks", 1, 10, 4)
chunk_size_chars = st.number_input("Chunk size (chars)", min_value=400, max_value=3000, value=1200, step=100)
chunk_overlap = st.number_input("Chunk overlap (chars)", min_value=20, max_value=800, value=150, step=10)
regenerate_index = st.button("π Rebuild handbook index (re-extract & re-embed)")
# =========================
# Filenames for index/meta
# =========================
HAND_INDEX_FN = "handbook_faiss.index"
HAND_META_FN = "handbook_metadata.json"
HAND_EMB_DIM_FN = "handbook_emb_dim.json"
# =========================
# Utilities: find/load PDF
# =========================
def find_handbook(preferred_name: str = "USTP Student Handbook 2023 Edition.pdf") -> List[str]:
"""Return list containing handbook path (preferred) or first pdf found."""
current_dir = os.path.dirname(os.path.abspath(__file__))
preferred_path = os.path.join(current_dir, preferred_name)
if os.path.exists(preferred_path):
st.info(f"π Found handbook: {preferred_name}")
return [preferred_path]
# fallback: any pdf
pdfs = glob.glob(os.path.join(current_dir, "*.pdf"))
if pdfs:
st.warning(f"β οΈ Preferred handbook not found. Using {os.path.basename(pdfs[0])}")
return [pdfs[0]]
st.error("β No PDF found in the app folder. Please add the handbook PDF.")
return []
def load_pdf_texts_with_page_info(pdf_paths: List[str]) -> List[Dict[str, Any]]:
"""Extract text (per page) and return list of dicts with filename, page, text."""
pages = []
for p in pdf_paths:
try:
with open(p, "rb") as f:
reader = PyPDF2.PdfReader(f)
for i, page in enumerate(reader.pages):
try:
raw = page.extract_text() or ""
except Exception:
raw = ""
pages.append({"filename": os.path.basename(p), "page": i + 1, "text": raw})
except Exception as e:
st.warning(f"Failed to read {p}: {e}")
return pages
def chunk_pages_into_segments(pages: List[Dict[str, Any]], chunk_size: int, overlap: int) -> List[Dict[str, Any]]:
"""
Split pages into overlapping character chunks while preserving filename/page metadata.
"""
chunks = []
for pg in pages:
text = (pg.get("text") or "").strip()
if not text:
continue
filename = pg.get("filename", "handbook")
page_no = pg.get("page", 0)
start = 0
chunk_id = 0
L = len(text)
while start < L:
end = min(start + chunk_size, L)
seg = text[start:end].strip()
if len(seg) >= 30:
chunks.append({
"filename": filename,
"page": page_no,
"chunk_id": f"{filename}_p{page_no}_c{chunk_id}",
"content": seg
})
chunk_id += 1
start = end - overlap
if start < 0:
start = 0
return chunks
# =========================
# Embeddings: robust pipeline
# =========================
TFIDF_MAX_FEATURES = 50000
@st.cache_resource
def get_tfidf_vectorizer():
return TfidfVectorizer(stop_words="english", max_features=TFIDF_MAX_FEATURES)
@st.cache_resource
def load_local_embedder():
"""
Try to load a SentenceTransformer model. Will raise if cannot load.
"""
# compact, fast model recommended
MODEL_NAME = "all-MiniLM-L6-v2"
return SentenceTransformer(MODEL_NAME)
def hf_embeddings_call_if_possible(texts: List[str], model_name: str = "sentence-transformers/all-mpnet-base-v2") -> Tuple[bool, Any]:
"""
Try calling HF InferenceClient embeddings call in a few ways depending on client version.
Returns (success_bool, embeddings_or_error)
"""
if not hf_client:
return False, "No HF client"
try:
# Preferred modern method
if hasattr(hf_client, "embeddings"):
out = hf_client.embeddings(model=model_name, inputs=texts)
# handle common shapes
if isinstance(out, dict) and "embedding" in out:
# single input case
return True, np.array(out["embedding"], dtype=np.float32)
# sometimes returns list of dicts
if isinstance(out, list) and out and isinstance(out[0], dict) and "embedding" in out[0]:
arr = [d["embedding"] for d in out]
return True, np.array(arr, dtype=np.float32)
# sometimes returns list-of-lists
if isinstance(out, list) and len(out) and isinstance(out[0], (list, tuple)):
return True, np.array(out, dtype=np.float32)
return False, f"Unexpected hf_client.embeddings output shape: {type(out)}"
# older client versions may have 'feature_extraction'
if hasattr(hf_client, "feature_extraction"):
out = hf_client.feature_extraction(texts, model=model_name)
return True, np.array(out, dtype=np.float32)
# As a last resort, try .post() to the inference endpoint (some versions)
if hasattr(hf_client, "post"):
url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_name}"
out = hf_client.post(url, json={"inputs": texts})
return True, np.array(out, dtype=np.float32)
except Exception as e:
return False, e
return False, "No known embeddings method on hf_client"
def fallback_vectorize(texts: List[str]) -> np.ndarray:
"""TF-IDF fallback embeddings (normalized)."""
if not texts:
return np.zeros((0, 0), dtype=np.float32)
vect = get_tfidf_vectorizer()
X = vect.fit_transform(texts) # sparse matrix
arr = X.toarray().astype(np.float32)
norms = np.linalg.norm(arr, axis=1, keepdims=True)
norms[norms == 0] = 1.0
arr = arr / norms
return arr
def embed_texts(texts: List[str]) -> np.ndarray:
"""
Unified embedding function:
1) Try HF embedding call (if client present)
2) Try local SentenceTransformer embedder
3) Fallback to TF-IDF
Returns normalized float32 numpy array.
"""
if not texts:
return np.zeros((0, 0), dtype=np.float32)
# 1) HF first (cheap if credits available)
success, out = hf_embeddings_call_if_possible(texts)
if success:
try:
arr = np.array(out, dtype=np.float32)
# if single vector returned for single input, reshape
if arr.ndim == 1:
arr = arr.reshape(1, -1)
norms = np.linalg.norm(arr, axis=1, keepdims=True)
norms[norms == 0] = 1.0
return arr / norms
except Exception:
pass
# 2) Local model
try:
model = load_local_embedder()
arr = model.encode(texts, convert_to_numpy=True, show_progress_bar=False)
arr = np.array(arr, dtype=np.float32)
if arr.ndim == 1:
arr = arr.reshape(1, -1)
norms = np.linalg.norm(arr, axis=1, keepdims=True)
norms[norms == 0] = 1.0
return arr / norms
except Exception as e:
st.warning(f"β οΈ Local SentenceTransformer failed or unavailable: {e}")
# 3) TF-IDF fallback
try:
st.info("Using TF-IDF fallback embeddings (offline).")
return fallback_vectorize(texts)
except Exception as e:
st.error(f"Embedding fallback failed completely: {e}")
return np.zeros((len(texts), 128), dtype=np.float32)
# =========================
# Build / load index
# =========================
def build_faiss_index(chunks: List[Dict[str, Any]]) -> Tuple[Any, List[Dict[str, Any]]]:
"""
Build FAISS index (if faiss available) and return index + metadata (chunks)
"""
texts = [c["content"] for c in chunks]
emb = embed_texts(texts)
if emb.size == 0:
raise RuntimeError("No embeddings produced.")
if faiss is not None:
d = emb.shape[1]
# Use Inner Product on normalized vectors for cosine
index = faiss.IndexFlatIP(d)
# ensure normalized
norms = np.linalg.norm(emb, axis=1, keepdims=True)
norms[norms == 0] = 1.0
emb_norm = emb / norms
index.add(emb_norm.astype("float32"))
# Save index & metadata
faiss.write_index(index, HAND_INDEX_FN)
with open(HAND_META_FN, "w", encoding="utf-8") as f:
json.dump(chunks, f, indent=2)
with open(HAND_EMB_DIM_FN, "w", encoding="utf-8") as f:
json.dump({"dim": d}, f)
return index, chunks
else:
# No FAISS: we return embeddings baked into an in-memory structure (meta includes embeddings)
for i, c in enumerate(chunks):
c["_embedding"] = emb[i].tolist()
with open(HAND_META_FN, "w", encoding="utf-8") as f:
json.dump(chunks, f, indent=2)
return None, chunks
def load_index_and_metadata() -> Tuple[Any, List[Dict[str, Any]]]:
if os.path.exists(HAND_META_FN) and os.path.exists(HAND_EMB_DIM_FN) and os.path.exists(HAND_INDEX_FN) and faiss is not None:
try:
index = faiss.read_index(HAND_INDEX_FN)
with open(HAND_META_FN, "r", encoding="utf-8") as f:
meta = json.load(f)
return index, meta
except Exception as e:
st.warning(f"Failed to load saved FAISS index: {e}")
return None, None
# fallback to metadata only
if os.path.exists(HAND_META_FN):
with open(HAND_META_FN, "r", encoding="utf-8") as f:
meta = json.load(f)
return None, meta
return None, None
# =========================
# Retrieval
# =========================
def retrieve_top_chunks(query: str, k: int = 4, metadata: List[Dict[str, Any]] = None, index = None) -> Tuple[List[Dict[str, Any]], List[float]]:
"""
Return top-k chunks and similarity scores (cosine-like).
Works with FAISS if available, otherwise does brute-force using stored embeddings or TF-IDF.
"""
if not metadata:
metadata = []
# If FAISS index available
if index is not None:
q_emb = embed_texts([query])
if q_emb.ndim == 1:
q_emb = q_emb.reshape(1, -1)
# normalize and search
norms = np.linalg.norm(q_emb, axis=1, keepdims=True)
norms[norms == 0] = 1.0
q_emb_norm = q_emb / norms
D, I = index.search(q_emb_norm.astype("float32"), k)
scores = D[0].tolist()
idxs = I[0].tolist()
results = []
for idx, score in zip(idxs, scores):
if 0 <= idx < len(metadata):
results.append(metadata[idx])
return results, scores
# else brute-force: metadata may include stored embeddings or we compute embeddings of metadata texts
# If metadata items have "_embedding", use them
if metadata and "_embedding" in metadata[0]:
emb_mat = np.array([np.array(m["_embedding"], dtype=np.float32) for m in metadata])
q_emb = embed_texts([query]).astype(np.float32)
if q_emb.ndim == 1:
q_emb = q_emb.reshape(1, -1)
# cosine
emb_norms = np.linalg.norm(emb_mat, axis=1, keepdims=True)
emb_norms[emb_norms == 0] = 1.0
emb_mat_n = emb_mat / emb_norms
qn = q_emb / np.linalg.norm(q_emb, axis=1, keepdims=True)
sims = (emb_mat_n @ qn.T).squeeze() # cosine values
idxs = np.argsort(-sims)[:k]
results = [metadata[int(i)] for i in idxs]
scores = [float(sims[int(i)]) for i in idxs]
return results, scores
# final fallback: TF-IDF direct scoring between query and chunk contents (cheap)
texts = [m["content"] for m in metadata]
vect = TfidfVectorizer(stop_words="english", max_features=TFIDF_MAX_FEATURES)
if texts:
X = vect.fit_transform(texts)
qv = vect.transform([query])
sims = (X @ qv.T).toarray().squeeze()
idxs = np.argsort(-sims)[:k]
results = [metadata[int(i)] for i in idxs]
scores = [float(sims[int(i)]) for i in idxs]
return results, scores
return [], []
# =========================
# Extractive answer fallback
# =========================
def extractive_answer_from_chunks(retrieved_chunks: List[Dict[str, Any]], query: str) -> str:
if not retrieved_chunks:
return "The handbook does not specify that."
q_tokens = set([t.lower() for t in re.findall(r"\w+", query) if len(t) > 2])
scored = []
for rc in retrieved_chunks:
text = rc.get("content") or rc.get("text") or ""
sents = re.split(r'(?<=[.!?])\s+', text)
for s in sents:
tokens = set([t.lower() for t in re.findall(r"\w+", s) if len(t) > 2])
if not tokens:
continue
overlap = len(q_tokens & tokens) / (1 + len(tokens))
scored.append((overlap, s.strip(), rc))
if not scored:
return "The handbook does not specify that."
topk = nlargest(2, scored, key=lambda x: x[0])
parts = []
for score, sent, rc in topk:
cite = f"(Source: {rc.get('filename','handbook')}, page {rc.get('page',0)})"
short_sent = sent if len(sent) <= 400 else sent[:397] + "..."
parts.append(f"\"{short_sent}\" {cite}")
final = "\n\n".join(parts)
final += "\n\nTakeaway: Refer to the cited section(s) above for the official handbook wording."
return final
# =========================
# Generation with HF fallback
# =========================
def try_hf_generate(prompt: str) -> Tuple[bool, str]:
"""
Try various HF generation endpoints. Returns (success, text_or_error).
Handles different InferenceClient versions gracefully.
"""
if not hf_client:
return False, "No HF client"
# 1) text_generation method
try:
if hasattr(hf_client, "text_generation"):
out = hf_client.text_generation(model=DEFAULT_MODEL, inputs=prompt, max_new_tokens=400, temperature=0.25)
# out may be dict or list depending on client
if isinstance(out, dict) and "generated_text" in out:
return True, out["generated_text"]
if isinstance(out, list) and out and "generated_text" in out[0]:
return True, out[0]["generated_text"]
return True, str(out)
except Exception as e:
# ignore and fallback
pass
# 2) chat style: try common patterns
try:
# Some clients expose hf_client.chat()
if hasattr(hf_client, "chat"):
resp = hf_client.chat(model=DEFAULT_MODEL, messages=[{"role":"user","content":prompt}], max_tokens=400, temperature=0.25)
# try to extract common shapes
if isinstance(resp, dict) and "choices" in resp:
try:
return True, resp["choices"][0]["message"]["content"]
except Exception:
return True, str(resp)
if isinstance(resp, list) and resp and isinstance(resp[0], dict) and "generated_text" in resp[0]:
return True, resp[0]["generated_text"]
return True, str(resp)
# Some clients have chat.completions.create()
if hasattr(hf_client, "chat") and hasattr(hf_client.chat, "completions") and hasattr(hf_client.chat.completions, "create"):
resp = hf_client.chat.completions.create(model=DEFAULT_MODEL, messages=[{"role":"user","content":prompt}], max_tokens=400, temperature=0.25)
try:
return True, resp.choices[0].message["content"]
except Exception:
return True, str(resp)
# Last resort: some clients have 'create' on top-level
if hasattr(hf_client, "create"):
resp = hf_client.create(model=DEFAULT_MODEL, inputs=prompt, max_new_tokens=400, temperature=0.25)
if isinstance(resp, dict) and "generated_text" in resp:
return True, resp["generated_text"]
return True, str(resp)
except Exception as e:
return False, e
return False, "No known generation method"
def generate_answer(context: str, query: str, retrieved_chunks: List[Dict[str, Any]] = None) -> str:
"""
Attempt to call HF generation; if that fails, fallback to extractive, citation-backed answer.
Pass retrieved_chunks (list) so extractive fallback can cite pages.
"""
prompt = f"""
You are a precise academic assistant specialized in university policies.
Use only the provided USTP Student Handbook content below. If the answer is not in the provided text, respond exactly:
"The handbook does not specify that."
Context:
{context}
Question: {query}
Provide a concise answer including source citations (filename + page).
"""
success, out = try_hf_generate(prompt)
if success:
# if out is not str, ensure str
return out if isinstance(out, str) else str(out)
# HF failed (e.g., 402 or no credits) -> extractive fallback
st.warning("HF generation unavailable β using extractive handbook-backed answer (no hallucination).")
return extractive_answer_from_chunks(retrieved_chunks or [], query)
# =========================
# Index management (persist/load)
# =========================
def ensure_handbook_index(rebuild: bool = False):
"""
Create or load index and metadata.
Stores results in st.session_state as well for quick reuse.
"""
# If already built and not rebuilding, return
if st.session_state.get("handbook_ready") and not rebuild:
return
pdfs = find_handbook()
if not pdfs:
st.session_state.handbook_ready = False
st.session_state.handbook_chunks = []
return
# if saved index exists & not rebuilding
if not rebuild and os.path.exists(HAND_META_FN) and (faiss is not None and os.path.exists(HAND_INDEX_FN) and os.path.exists(HAND_EMB_DIM_FN)):
try:
idx, meta = load_index_and_metadata()
if meta:
st.session_state.faiss_index = idx
st.session_state.metadata = meta
st.session_state.handbook_ready = True
st.success(f"Loaded saved index ({len(meta)} chunks).")
return
except Exception:
pass
# extract pages -> chunks
pages = load_pdf_texts_with_page_info(pdfs)
chunks = chunk_pages_into_segments(pages, chunk_size=int(chunk_size_chars), overlap=int(chunk_overlap))
if not chunks:
st.error("No text found in PDFs.")
st.session_state.handbook_ready = False
return
# build index (this will attempt HF embeddings -> local -> TFIDF)
try:
idx, meta = build_faiss_index(chunks)
st.session_state.faiss_index = idx
st.session_state.metadata = meta
st.session_state.handbook_ready = True
st.success(f"Indexed {len(meta)} chunks.")
except Exception as e:
st.error(f"Failed to build index: {e}")
# as fallback, store chunks in session
st.session_state.metadata = chunks
st.session_state.faiss_index = None
st.session_state.handbook_ready = True
# build / load index
ensure_handbook_index(rebuild=regenerate_index)
# =========================
# Chat UI
# =========================
st.divider()
st.subheader("π¬ Ask the handbook (only handbook-based answers)")
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
# Input and handling
user_query = st.chat_input("Ask a question about the handbook...")
if user_query:
ts = int(time.time() * 1000)
st.session_state.chat_history.append({"role": "user", "content": user_query, "ts": ts})
# Retrieve top chunks
index = st.session_state.get("faiss_index")
metadata = st.session_state.get("metadata", [])
with st.spinner("π Retrieving relevant handbook excerpts..."):
retrieved, scores = retrieve_top_chunks(user_query, k=int(top_k), metadata=metadata, index=index)
# Reject if no good match
if not retrieved or (scores and max(scores) < float(similarity_threshold)):
reply = "Sorry, I can only answer questions based on the school's handbook. I couldn't find relevant information in the handbook for your question."
st.session_state.chat_history.append({"role": "assistant", "content": reply, "ts": int(time.time() * 1000)})
else:
# Build context snippet for model (concise)
context_text = "\n\n".join([f"--- {r['chunk_id']} | {r['filename']} | page {r['page']} ---\n{r['content']}" if 'chunk_id' in r else f"(Page {r.get('page')})\n{r.get('content')}" for r in retrieved])
# Query model or fallback extractive
with st.spinner("π€ Generating answer..."):
ans = generate_answer(context_text, user_query, retrieved_chunks=retrieved)
# Append citation block
citations = "\n".join([f"{r.get('chunk_id', 'n/a')} β {r.get('filename')} p{r.get('page')} (score {float(s):.3f})" for r, s in zip(retrieved, scores or [])])
final = f"{ans}\n\n**Retrieved sources (top results):**\n{citations}"
st.session_state.chat_history.append({"role": "assistant", "content": final, "ts": int(time.time() * 1000)})
# Display chat history with unique keys
st.divider()
st.subheader("Conversation")
for i, entry in enumerate(st.session_state.chat_history):
is_user = entry.get("role") == "user"
# use ts and i to ensure uniqueness across identical messages
key = f"msg_{i}_{entry.get('ts',0)}"
st_message(entry["content"], is_user=is_user, key=key)
# Toolbar
st.divider()
col1, col2 = st.columns([1, 1])
with col1:
if st.button("π Reset chat"):
st.session_state.chat_history = []
st.success("Chat reset.")
with col2:
transcript = "\n\n".join([f"{m['role'].upper()}: {m['content']}" for m in st.session_state.chat_history])
st.download_button("π₯ Download transcript", data=transcript, file_name="handbook_transcript.txt")
st.caption("β‘ FAISS + Local embeddings + Hugging Face (when available). Default model: Qwen 2.5 14B")
|