Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +517 -189
src/streamlit_app.py
CHANGED
|
@@ -1,252 +1,580 @@
|
|
| 1 |
-
#
|
| 2 |
-
# π Handbook Assistant (FAST OPTIMIZED VERSION)
|
| 3 |
-
# ======================================================
|
| 4 |
-
# Requirements:
|
| 5 |
-
# pip install streamlit python-dotenv PyPDF2 numpy faiss-cpu scikit-learn huggingface-hub streamlit-chat sentence-transformers
|
| 6 |
-
|
| 7 |
import os
|
| 8 |
-
import time
|
| 9 |
import glob
|
| 10 |
import json
|
|
|
|
| 11 |
import math
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
import numpy as np
|
| 15 |
import streamlit as st
|
| 16 |
-
from dotenv import load_dotenv
|
| 17 |
import PyPDF2
|
| 18 |
-
from
|
| 19 |
-
|
| 20 |
-
# Optional fast embedding model
|
| 21 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
#
|
| 24 |
try:
|
| 25 |
import faiss
|
| 26 |
except Exception:
|
| 27 |
faiss = None
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
#
|
| 31 |
-
#
|
| 32 |
-
st.set_page_config(page_title="
|
| 33 |
-
st.title("
|
| 34 |
-
st.caption("
|
| 35 |
|
| 36 |
load_dotenv()
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
HAND_INDEX_FN = "handbook_faiss.index"
|
| 40 |
HAND_META_FN = "handbook_metadata.json"
|
| 41 |
HAND_EMB_DIM_FN = "handbook_emb_dim.json"
|
| 42 |
|
| 43 |
-
#
|
| 44 |
-
#
|
| 45 |
-
#
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
f.write(uploaded_pdf.getbuffer())
|
| 61 |
-
st.session_state.uploaded_pdf_path = temp_path
|
| 62 |
-
st.success(f"β
Uploaded and saved: {uploaded_pdf.name}")
|
| 63 |
-
|
| 64 |
-
# ======================================================
|
| 65 |
-
# π§© UTILITIES
|
| 66 |
-
# ======================================================
|
| 67 |
-
@st.cache_resource(show_spinner=False)
|
| 68 |
-
def get_local_embedder():
|
| 69 |
-
"""Load MiniLM model (only once)."""
|
| 70 |
-
return SentenceTransformer("all-MiniLM-L6-v2")
|
| 71 |
-
|
| 72 |
-
def find_pdfs(patterns=["handbook*.pdf", "*.pdf"]) -> List[str]:
|
| 73 |
-
"""Find handbook PDFs in script folder or uploaded ones."""
|
| 74 |
-
base_dir = os.path.dirname(os.path.abspath(__file__))
|
| 75 |
-
files = []
|
| 76 |
-
for patt in patterns:
|
| 77 |
-
files += glob.glob(os.path.join(base_dir, patt))
|
| 78 |
-
if not files and "uploaded_pdf_path" in st.session_state:
|
| 79 |
-
files = [st.session_state.uploaded_pdf_path]
|
| 80 |
-
return sorted(list(set(files)))
|
| 81 |
|
| 82 |
def load_pdf_texts_with_page_info(pdf_paths: List[str]) -> List[Dict[str, Any]]:
|
| 83 |
-
"""Extract text
|
| 84 |
-
|
| 85 |
for p in pdf_paths:
|
| 86 |
try:
|
| 87 |
with open(p, "rb") as f:
|
| 88 |
reader = PyPDF2.PdfReader(f)
|
| 89 |
for i, page in enumerate(reader.pages):
|
| 90 |
try:
|
| 91 |
-
|
| 92 |
except Exception:
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
all_pages.append({"filename": os.path.basename(p), "page": i + 1, "text": text})
|
| 96 |
except Exception as e:
|
| 97 |
-
st.warning(f"
|
| 98 |
-
return
|
| 99 |
|
| 100 |
def chunk_pages_into_segments(pages: List[Dict[str, Any]], chunk_size: int, overlap: int) -> List[Dict[str, Any]]:
|
| 101 |
-
"""
|
|
|
|
|
|
|
| 102 |
chunks = []
|
| 103 |
for pg in pages:
|
| 104 |
-
text = pg
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
seg = text[start:end].strip()
|
| 110 |
-
if len(seg)
|
| 111 |
chunks.append({
|
| 112 |
"filename": filename,
|
| 113 |
"page": page_no,
|
| 114 |
"chunk_id": f"{filename}_p{page_no}_c{chunk_id}",
|
| 115 |
-
"
|
| 116 |
})
|
| 117 |
-
|
| 118 |
start = end - overlap
|
| 119 |
if start < 0:
|
| 120 |
start = 0
|
| 121 |
return chunks
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
def
|
| 134 |
-
"""
|
| 135 |
-
if
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
#
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
return
|
| 166 |
|
| 167 |
-
pdfs =
|
| 168 |
if not pdfs:
|
| 169 |
-
st.error("β No handbook PDF found.")
|
| 170 |
st.session_state.handbook_ready = False
|
|
|
|
| 171 |
return
|
| 172 |
|
| 173 |
-
#
|
| 174 |
-
if os.path.exists(
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
|
|
|
| 186 |
pages = load_pdf_texts_with_page_info(pdfs)
|
| 187 |
-
chunks = chunk_pages_into_segments(pages, int(chunk_size_chars), int(chunk_overlap))
|
| 188 |
if not chunks:
|
| 189 |
-
st.error("
|
|
|
|
| 190 |
return
|
| 191 |
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
#
|
| 207 |
-
# ======================================================
|
| 208 |
-
def embed_query(query: str) -> np.ndarray:
|
| 209 |
-
model = get_local_embedder()
|
| 210 |
-
emb = model.encode([query], convert_to_numpy=True, normalize_embeddings=True)[0]
|
| 211 |
-
return emb.astype("float32")
|
| 212 |
-
|
| 213 |
-
def retrieve_top_chunks(query: str, k: int):
|
| 214 |
-
index = st.session_state.get("faiss_index")
|
| 215 |
-
metadata = st.session_state.get("metadata", [])
|
| 216 |
-
if not index or not metadata:
|
| 217 |
-
return [], []
|
| 218 |
-
q_emb = embed_query(query).reshape(1, -1)
|
| 219 |
-
D, I = index.search(q_emb, k)
|
| 220 |
-
results = [metadata[i] for i in I[0] if i < len(metadata)]
|
| 221 |
-
return results, D[0].tolist()
|
| 222 |
-
|
| 223 |
-
# ======================================================
|
| 224 |
-
# π£οΈ CHAT INTERFACE
|
| 225 |
-
# ======================================================
|
| 226 |
ensure_handbook_index(rebuild=regenerate_index)
|
| 227 |
|
|
|
|
|
|
|
|
|
|
| 228 |
st.divider()
|
| 229 |
-
st.subheader("π¬ Ask the handbook")
|
| 230 |
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
st_message(user_input, is_user=True)
|
| 234 |
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
else:
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
|
|
|
|
|
|
| 249 |
st.divider()
|
| 250 |
-
st.subheader("Conversation
|
| 251 |
-
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# streamlit_app.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import os
|
|
|
|
| 3 |
import glob
|
| 4 |
import json
|
| 5 |
+
import time
|
| 6 |
import math
|
| 7 |
+
import re
|
| 8 |
+
from typing import List, Dict, Any, Tuple
|
| 9 |
|
| 10 |
import numpy as np
|
| 11 |
import streamlit as st
|
|
|
|
| 12 |
import PyPDF2
|
| 13 |
+
from dotenv import load_dotenv
|
| 14 |
+
from huggingface_hub import InferenceClient, login
|
|
|
|
| 15 |
from sentence_transformers import SentenceTransformer
|
| 16 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 17 |
+
from heapq import nlargest
|
| 18 |
|
| 19 |
+
# FAISS (optional)
|
| 20 |
try:
|
| 21 |
import faiss
|
| 22 |
except Exception:
|
| 23 |
faiss = None
|
| 24 |
|
| 25 |
+
# =========================
|
| 26 |
+
# Page + env
|
| 27 |
+
# =========================
|
| 28 |
+
st.set_page_config(page_title="π Handbook Assistant", page_icon="π", layout="wide")
|
| 29 |
+
st.title("π USTP Student Handbook Assistant (2023 Edition)")
|
| 30 |
+
st.caption("This assistant answers only from the handbook. Place 'USTP Student Handbook 2023 Edition.pdf' in the same folder.")
|
| 31 |
|
| 32 |
load_dotenv()
|
| 33 |
+
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 34 |
+
|
| 35 |
+
hf_client = None
|
| 36 |
+
if HF_TOKEN:
|
| 37 |
+
try:
|
| 38 |
+
login(HF_TOKEN)
|
| 39 |
+
except Exception:
|
| 40 |
+
# login might be unnecessary depending on environment
|
| 41 |
+
pass
|
| 42 |
+
try:
|
| 43 |
+
hf_client = InferenceClient(token=HF_TOKEN)
|
| 44 |
+
except Exception as e:
|
| 45 |
+
st.warning(f"Could not init InferenceClient: {e}")
|
| 46 |
+
|
| 47 |
+
# =========================
|
| 48 |
+
# Sidebar configuration
|
| 49 |
+
# =========================
|
| 50 |
+
with st.sidebar:
|
| 51 |
+
st.header("βοΈ Settings")
|
| 52 |
+
model_options = {
|
| 53 |
+
"Qwen 2.5 14B Instruct (default)": "Qwen/Qwen2.5-14B-Instruct",
|
| 54 |
+
"Mistral 7B Instruct": "mistralai/Mistral-7B-Instruct-v0.3",
|
| 55 |
+
"Llama 3 8B Instruct": "meta-llama/Meta-Llama-3-8B-Instruct",
|
| 56 |
+
"Falcon 7B Instruct": "tiiuae/falcon-7b-instruct",
|
| 57 |
+
"Mixtral 8x7B Instruct": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 58 |
+
}
|
| 59 |
+
model_label = st.selectbox("Choose model", list(model_options.keys()), index=0)
|
| 60 |
+
DEFAULT_MODEL = model_options[model_label]
|
| 61 |
+
|
| 62 |
+
st.markdown("---")
|
| 63 |
+
similarity_threshold = st.slider("Similarity threshold", 0.30, 0.95, 0.62, 0.01)
|
| 64 |
+
top_k = st.slider("Top K retrieved chunks", 1, 10, 4)
|
| 65 |
+
chunk_size_chars = st.number_input("Chunk size (chars)", min_value=400, max_value=3000, value=1200, step=100)
|
| 66 |
+
chunk_overlap = st.number_input("Chunk overlap (chars)", min_value=20, max_value=800, value=150, step=10)
|
| 67 |
+
regenerate_index = st.button("π Rebuild handbook index (re-extract & re-embed)")
|
| 68 |
+
|
| 69 |
+
# =========================
|
| 70 |
+
# Filenames for index/meta
|
| 71 |
+
# =========================
|
| 72 |
HAND_INDEX_FN = "handbook_faiss.index"
|
| 73 |
HAND_META_FN = "handbook_metadata.json"
|
| 74 |
HAND_EMB_DIM_FN = "handbook_emb_dim.json"
|
| 75 |
|
| 76 |
+
# =========================
|
| 77 |
+
# Utilities: find/load PDF
|
| 78 |
+
# =========================
|
| 79 |
+
def find_handbook(preferred_name: str = "USTP Student Handbook 2023 Edition.pdf") -> List[str]:
|
| 80 |
+
"""Return list containing handbook path (preferred) or first pdf found."""
|
| 81 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
| 82 |
+
preferred_path = os.path.join(current_dir, preferred_name)
|
| 83 |
+
if os.path.exists(preferred_path):
|
| 84 |
+
st.info(f"π Found handbook: {preferred_name}")
|
| 85 |
+
return [preferred_path]
|
| 86 |
+
# fallback: any pdf
|
| 87 |
+
pdfs = glob.glob(os.path.join(current_dir, "*.pdf"))
|
| 88 |
+
if pdfs:
|
| 89 |
+
st.warning(f"β οΈ Preferred handbook not found. Using {os.path.basename(pdfs[0])}")
|
| 90 |
+
return [pdfs[0]]
|
| 91 |
+
st.error("β No PDF found in the app folder. Please add the handbook PDF.")
|
| 92 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
def load_pdf_texts_with_page_info(pdf_paths: List[str]) -> List[Dict[str, Any]]:
|
| 95 |
+
"""Extract text (per page) and return list of dicts with filename, page, text."""
|
| 96 |
+
pages = []
|
| 97 |
for p in pdf_paths:
|
| 98 |
try:
|
| 99 |
with open(p, "rb") as f:
|
| 100 |
reader = PyPDF2.PdfReader(f)
|
| 101 |
for i, page in enumerate(reader.pages):
|
| 102 |
try:
|
| 103 |
+
raw = page.extract_text() or ""
|
| 104 |
except Exception:
|
| 105 |
+
raw = ""
|
| 106 |
+
pages.append({"filename": os.path.basename(p), "page": i + 1, "text": raw})
|
|
|
|
| 107 |
except Exception as e:
|
| 108 |
+
st.warning(f"Failed to read {p}: {e}")
|
| 109 |
+
return pages
|
| 110 |
|
| 111 |
def chunk_pages_into_segments(pages: List[Dict[str, Any]], chunk_size: int, overlap: int) -> List[Dict[str, Any]]:
|
| 112 |
+
"""
|
| 113 |
+
Split pages into overlapping character chunks while preserving filename/page metadata.
|
| 114 |
+
"""
|
| 115 |
chunks = []
|
| 116 |
for pg in pages:
|
| 117 |
+
text = (pg.get("text") or "").strip()
|
| 118 |
+
if not text:
|
| 119 |
+
continue
|
| 120 |
+
filename = pg.get("filename", "handbook")
|
| 121 |
+
page_no = pg.get("page", 0)
|
| 122 |
+
start = 0
|
| 123 |
+
chunk_id = 0
|
| 124 |
+
L = len(text)
|
| 125 |
+
while start < L:
|
| 126 |
+
end = min(start + chunk_size, L)
|
| 127 |
seg = text[start:end].strip()
|
| 128 |
+
if len(seg) >= 30:
|
| 129 |
chunks.append({
|
| 130 |
"filename": filename,
|
| 131 |
"page": page_no,
|
| 132 |
"chunk_id": f"{filename}_p{page_no}_c{chunk_id}",
|
| 133 |
+
"content": seg
|
| 134 |
})
|
| 135 |
+
chunk_id += 1
|
| 136 |
start = end - overlap
|
| 137 |
if start < 0:
|
| 138 |
start = 0
|
| 139 |
return chunks
|
| 140 |
|
| 141 |
+
# =========================
|
| 142 |
+
# Embeddings: robust pipeline
|
| 143 |
+
# =========================
|
| 144 |
+
TFIDF_MAX_FEATURES = 50000
|
| 145 |
+
|
| 146 |
+
@st.cache_resource
|
| 147 |
+
def get_tfidf_vectorizer():
|
| 148 |
+
return TfidfVectorizer(stop_words="english", max_features=TFIDF_MAX_FEATURES)
|
| 149 |
+
|
| 150 |
+
@st.cache_resource
|
| 151 |
+
def load_local_embedder():
|
| 152 |
+
"""
|
| 153 |
+
Try to load a SentenceTransformer model. Will raise if cannot load.
|
| 154 |
+
"""
|
| 155 |
+
# compact, fast model recommended
|
| 156 |
+
MODEL_NAME = "all-MiniLM-L6-v2"
|
| 157 |
+
return SentenceTransformer(MODEL_NAME)
|
| 158 |
+
|
| 159 |
+
def hf_embeddings_call_if_possible(texts: List[str], model_name: str = "sentence-transformers/all-mpnet-base-v2") -> Tuple[bool, Any]:
|
| 160 |
+
"""
|
| 161 |
+
Try calling HF InferenceClient embeddings call in a few ways depending on client version.
|
| 162 |
+
Returns (success_bool, embeddings_or_error)
|
| 163 |
+
"""
|
| 164 |
+
if not hf_client:
|
| 165 |
+
return False, "No HF client"
|
| 166 |
+
try:
|
| 167 |
+
# Preferred modern method
|
| 168 |
+
if hasattr(hf_client, "embeddings"):
|
| 169 |
+
out = hf_client.embeddings(model=model_name, inputs=texts)
|
| 170 |
+
# handle common shapes
|
| 171 |
+
if isinstance(out, dict) and "embedding" in out:
|
| 172 |
+
# single input case
|
| 173 |
+
return True, np.array(out["embedding"], dtype=np.float32)
|
| 174 |
+
# sometimes returns list of dicts
|
| 175 |
+
if isinstance(out, list) and out and isinstance(out[0], dict) and "embedding" in out[0]:
|
| 176 |
+
arr = [d["embedding"] for d in out]
|
| 177 |
+
return True, np.array(arr, dtype=np.float32)
|
| 178 |
+
# sometimes returns list-of-lists
|
| 179 |
+
if isinstance(out, list) and len(out) and isinstance(out[0], (list, tuple)):
|
| 180 |
+
return True, np.array(out, dtype=np.float32)
|
| 181 |
+
return False, f"Unexpected hf_client.embeddings output shape: {type(out)}"
|
| 182 |
+
# older client versions may have 'feature_extraction'
|
| 183 |
+
if hasattr(hf_client, "feature_extraction"):
|
| 184 |
+
out = hf_client.feature_extraction(texts, model=model_name)
|
| 185 |
+
return True, np.array(out, dtype=np.float32)
|
| 186 |
+
# As a last resort, try .post() to the inference endpoint (some versions)
|
| 187 |
+
if hasattr(hf_client, "post"):
|
| 188 |
+
url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_name}"
|
| 189 |
+
out = hf_client.post(url, json={"inputs": texts})
|
| 190 |
+
return True, np.array(out, dtype=np.float32)
|
| 191 |
+
except Exception as e:
|
| 192 |
+
return False, e
|
| 193 |
+
return False, "No known embeddings method on hf_client"
|
| 194 |
+
|
| 195 |
+
def fallback_vectorize(texts: List[str]) -> np.ndarray:
|
| 196 |
+
"""TF-IDF fallback embeddings (normalized)."""
|
| 197 |
+
if not texts:
|
| 198 |
+
return np.zeros((0, 0), dtype=np.float32)
|
| 199 |
+
vect = get_tfidf_vectorizer()
|
| 200 |
+
X = vect.fit_transform(texts) # sparse matrix
|
| 201 |
+
arr = X.toarray().astype(np.float32)
|
| 202 |
+
norms = np.linalg.norm(arr, axis=1, keepdims=True)
|
| 203 |
+
norms[norms == 0] = 1.0
|
| 204 |
+
arr = arr / norms
|
| 205 |
+
return arr
|
| 206 |
+
|
| 207 |
+
def embed_texts(texts: List[str]) -> np.ndarray:
|
| 208 |
+
"""
|
| 209 |
+
Unified embedding function:
|
| 210 |
+
1) Try HF embedding call (if client present)
|
| 211 |
+
2) Try local SentenceTransformer embedder
|
| 212 |
+
3) Fallback to TF-IDF
|
| 213 |
+
Returns normalized float32 numpy array.
|
| 214 |
+
"""
|
| 215 |
+
if not texts:
|
| 216 |
+
return np.zeros((0, 0), dtype=np.float32)
|
| 217 |
+
|
| 218 |
+
# 1) HF first (cheap if credits available)
|
| 219 |
+
success, out = hf_embeddings_call_if_possible(texts)
|
| 220 |
+
if success:
|
| 221 |
+
try:
|
| 222 |
+
arr = np.array(out, dtype=np.float32)
|
| 223 |
+
# if single vector returned for single input, reshape
|
| 224 |
+
if arr.ndim == 1:
|
| 225 |
+
arr = arr.reshape(1, -1)
|
| 226 |
+
norms = np.linalg.norm(arr, axis=1, keepdims=True)
|
| 227 |
+
norms[norms == 0] = 1.0
|
| 228 |
+
return arr / norms
|
| 229 |
+
except Exception:
|
| 230 |
+
pass
|
| 231 |
+
|
| 232 |
+
# 2) Local model
|
| 233 |
+
try:
|
| 234 |
+
model = load_local_embedder()
|
| 235 |
+
arr = model.encode(texts, convert_to_numpy=True, show_progress_bar=False)
|
| 236 |
+
arr = np.array(arr, dtype=np.float32)
|
| 237 |
+
if arr.ndim == 1:
|
| 238 |
+
arr = arr.reshape(1, -1)
|
| 239 |
+
norms = np.linalg.norm(arr, axis=1, keepdims=True)
|
| 240 |
+
norms[norms == 0] = 1.0
|
| 241 |
+
return arr / norms
|
| 242 |
+
except Exception as e:
|
| 243 |
+
st.warning(f"β οΈ Local SentenceTransformer failed or unavailable: {e}")
|
| 244 |
+
|
| 245 |
+
# 3) TF-IDF fallback
|
| 246 |
+
try:
|
| 247 |
+
st.info("Using TF-IDF fallback embeddings (offline).")
|
| 248 |
+
return fallback_vectorize(texts)
|
| 249 |
+
except Exception as e:
|
| 250 |
+
st.error(f"Embedding fallback failed completely: {e}")
|
| 251 |
+
return np.zeros((len(texts), 128), dtype=np.float32)
|
| 252 |
+
|
| 253 |
+
# =========================
|
| 254 |
+
# Build / load index
|
| 255 |
+
# =========================
|
| 256 |
+
def build_faiss_index(chunks: List[Dict[str, Any]]) -> Tuple[Any, List[Dict[str, Any]]]:
|
| 257 |
+
"""
|
| 258 |
+
Build FAISS index (if faiss available) and return index + metadata (chunks)
|
| 259 |
+
"""
|
| 260 |
+
texts = [c["content"] for c in chunks]
|
| 261 |
+
emb = embed_texts(texts)
|
| 262 |
+
if emb.size == 0:
|
| 263 |
+
raise RuntimeError("No embeddings produced.")
|
| 264 |
+
if faiss is not None:
|
| 265 |
+
d = emb.shape[1]
|
| 266 |
+
# Use Inner Product on normalized vectors for cosine
|
| 267 |
+
index = faiss.IndexFlatIP(d)
|
| 268 |
+
# ensure normalized
|
| 269 |
+
norms = np.linalg.norm(emb, axis=1, keepdims=True)
|
| 270 |
+
norms[norms == 0] = 1.0
|
| 271 |
+
emb_norm = emb / norms
|
| 272 |
+
index.add(emb_norm.astype("float32"))
|
| 273 |
+
# Save index & metadata
|
| 274 |
+
faiss.write_index(index, HAND_INDEX_FN)
|
| 275 |
+
with open(HAND_META_FN, "w", encoding="utf-8") as f:
|
| 276 |
+
json.dump(chunks, f, indent=2)
|
| 277 |
+
with open(HAND_EMB_DIM_FN, "w", encoding="utf-8") as f:
|
| 278 |
+
json.dump({"dim": d}, f)
|
| 279 |
+
return index, chunks
|
| 280 |
+
else:
|
| 281 |
+
# No FAISS: we return embeddings baked into an in-memory structure (meta includes embeddings)
|
| 282 |
+
for i, c in enumerate(chunks):
|
| 283 |
+
c["_embedding"] = emb[i].tolist()
|
| 284 |
+
with open(HAND_META_FN, "w", encoding="utf-8") as f:
|
| 285 |
+
json.dump(chunks, f, indent=2)
|
| 286 |
+
return None, chunks
|
| 287 |
+
|
| 288 |
+
def load_index_and_metadata() -> Tuple[Any, List[Dict[str, Any]]]:
|
| 289 |
+
if os.path.exists(HAND_META_FN) and os.path.exists(HAND_EMB_DIM_FN) and os.path.exists(HAND_INDEX_FN) and faiss is not None:
|
| 290 |
+
try:
|
| 291 |
+
index = faiss.read_index(HAND_INDEX_FN)
|
| 292 |
+
with open(HAND_META_FN, "r", encoding="utf-8") as f:
|
| 293 |
+
meta = json.load(f)
|
| 294 |
+
return index, meta
|
| 295 |
+
except Exception as e:
|
| 296 |
+
st.warning(f"Failed to load saved FAISS index: {e}")
|
| 297 |
+
return None, None
|
| 298 |
+
# fallback to metadata only
|
| 299 |
+
if os.path.exists(HAND_META_FN):
|
| 300 |
+
with open(HAND_META_FN, "r", encoding="utf-8") as f:
|
| 301 |
+
meta = json.load(f)
|
| 302 |
+
return None, meta
|
| 303 |
+
return None, None
|
| 304 |
+
|
| 305 |
+
# =========================
|
| 306 |
+
# Retrieval
|
| 307 |
+
# =========================
|
| 308 |
+
def retrieve_top_chunks(query: str, k: int = 4, metadata: List[Dict[str, Any]] = None, index = None) -> Tuple[List[Dict[str, Any]], List[float]]:
|
| 309 |
+
"""
|
| 310 |
+
Return top-k chunks and similarity scores (cosine-like).
|
| 311 |
+
Works with FAISS if available, otherwise does brute-force using stored embeddings or TF-IDF.
|
| 312 |
+
"""
|
| 313 |
+
if not metadata:
|
| 314 |
+
metadata = []
|
| 315 |
+
# If FAISS index available
|
| 316 |
+
if index is not None:
|
| 317 |
+
q_emb = embed_texts([query])
|
| 318 |
+
if q_emb.ndim == 1:
|
| 319 |
+
q_emb = q_emb.reshape(1, -1)
|
| 320 |
+
# normalize and search
|
| 321 |
+
norms = np.linalg.norm(q_emb, axis=1, keepdims=True)
|
| 322 |
+
norms[norms == 0] = 1.0
|
| 323 |
+
q_emb_norm = q_emb / norms
|
| 324 |
+
D, I = index.search(q_emb_norm.astype("float32"), k)
|
| 325 |
+
scores = D[0].tolist()
|
| 326 |
+
idxs = I[0].tolist()
|
| 327 |
+
results = []
|
| 328 |
+
for idx, score in zip(idxs, scores):
|
| 329 |
+
if 0 <= idx < len(metadata):
|
| 330 |
+
results.append(metadata[idx])
|
| 331 |
+
return results, scores
|
| 332 |
+
# else brute-force: metadata may include stored embeddings or we compute embeddings of metadata texts
|
| 333 |
+
# If metadata items have "_embedding", use them
|
| 334 |
+
if metadata and "_embedding" in metadata[0]:
|
| 335 |
+
emb_mat = np.array([np.array(m["_embedding"], dtype=np.float32) for m in metadata])
|
| 336 |
+
q_emb = embed_texts([query]).astype(np.float32)
|
| 337 |
+
if q_emb.ndim == 1:
|
| 338 |
+
q_emb = q_emb.reshape(1, -1)
|
| 339 |
+
# cosine
|
| 340 |
+
emb_norms = np.linalg.norm(emb_mat, axis=1, keepdims=True)
|
| 341 |
+
emb_norms[emb_norms == 0] = 1.0
|
| 342 |
+
emb_mat_n = emb_mat / emb_norms
|
| 343 |
+
qn = q_emb / np.linalg.norm(q_emb, axis=1, keepdims=True)
|
| 344 |
+
sims = (emb_mat_n @ qn.T).squeeze() # cosine values
|
| 345 |
+
idxs = np.argsort(-sims)[:k]
|
| 346 |
+
results = [metadata[int(i)] for i in idxs]
|
| 347 |
+
scores = [float(sims[int(i)]) for i in idxs]
|
| 348 |
+
return results, scores
|
| 349 |
+
# final fallback: TF-IDF direct scoring between query and chunk contents (cheap)
|
| 350 |
+
texts = [m["content"] for m in metadata]
|
| 351 |
+
vect = TfidfVectorizer(stop_words="english", max_features=TFIDF_MAX_FEATURES)
|
| 352 |
+
if texts:
|
| 353 |
+
X = vect.fit_transform(texts)
|
| 354 |
+
qv = vect.transform([query])
|
| 355 |
+
sims = (X @ qv.T).toarray().squeeze()
|
| 356 |
+
idxs = np.argsort(-sims)[:k]
|
| 357 |
+
results = [metadata[int(i)] for i in idxs]
|
| 358 |
+
scores = [float(sims[int(i)]) for i in idxs]
|
| 359 |
+
return results, scores
|
| 360 |
+
return [], []
|
| 361 |
+
|
| 362 |
+
# =========================
|
| 363 |
+
# Extractive answer fallback
|
| 364 |
+
# =========================
|
| 365 |
+
def extractive_answer_from_chunks(retrieved_chunks: List[Dict[str, Any]], query: str) -> str:
|
| 366 |
+
if not retrieved_chunks:
|
| 367 |
+
return "The handbook does not specify that."
|
| 368 |
+
q_tokens = set([t.lower() for t in re.findall(r"\w+", query) if len(t) > 2])
|
| 369 |
+
scored = []
|
| 370 |
+
for rc in retrieved_chunks:
|
| 371 |
+
text = rc.get("content") or rc.get("text") or ""
|
| 372 |
+
sents = re.split(r'(?<=[.!?])\s+', text)
|
| 373 |
+
for s in sents:
|
| 374 |
+
tokens = set([t.lower() for t in re.findall(r"\w+", s) if len(t) > 2])
|
| 375 |
+
if not tokens:
|
| 376 |
+
continue
|
| 377 |
+
overlap = len(q_tokens & tokens) / (1 + len(tokens))
|
| 378 |
+
scored.append((overlap, s.strip(), rc))
|
| 379 |
+
if not scored:
|
| 380 |
+
return "The handbook does not specify that."
|
| 381 |
+
topk = nlargest(2, scored, key=lambda x: x[0])
|
| 382 |
+
parts = []
|
| 383 |
+
for score, sent, rc in topk:
|
| 384 |
+
cite = f"(Source: {rc.get('filename','handbook')}, page {rc.get('page',0)})"
|
| 385 |
+
short_sent = sent if len(sent) <= 400 else sent[:397] + "..."
|
| 386 |
+
parts.append(f"\"{short_sent}\" {cite}")
|
| 387 |
+
final = "\n\n".join(parts)
|
| 388 |
+
final += "\n\nTakeaway: Refer to the cited section(s) above for the official handbook wording."
|
| 389 |
+
return final
|
| 390 |
+
|
| 391 |
+
# =========================
|
| 392 |
+
# Generation with HF fallback
|
| 393 |
+
# =========================
|
| 394 |
+
def try_hf_generate(prompt: str) -> Tuple[bool, str]:
|
| 395 |
+
"""
|
| 396 |
+
Try various HF generation endpoints. Returns (success, text_or_error).
|
| 397 |
+
Handles different InferenceClient versions gracefully.
|
| 398 |
+
"""
|
| 399 |
+
if not hf_client:
|
| 400 |
+
return False, "No HF client"
|
| 401 |
+
# 1) text_generation method
|
| 402 |
+
try:
|
| 403 |
+
if hasattr(hf_client, "text_generation"):
|
| 404 |
+
out = hf_client.text_generation(model=DEFAULT_MODEL, inputs=prompt, max_new_tokens=400, temperature=0.25)
|
| 405 |
+
# out may be dict or list depending on client
|
| 406 |
+
if isinstance(out, dict) and "generated_text" in out:
|
| 407 |
+
return True, out["generated_text"]
|
| 408 |
+
if isinstance(out, list) and out and "generated_text" in out[0]:
|
| 409 |
+
return True, out[0]["generated_text"]
|
| 410 |
+
return True, str(out)
|
| 411 |
+
except Exception as e:
|
| 412 |
+
# ignore and fallback
|
| 413 |
+
pass
|
| 414 |
+
# 2) chat style: try common patterns
|
| 415 |
+
try:
|
| 416 |
+
# Some clients expose hf_client.chat()
|
| 417 |
+
if hasattr(hf_client, "chat"):
|
| 418 |
+
resp = hf_client.chat(model=DEFAULT_MODEL, messages=[{"role":"user","content":prompt}], max_tokens=400, temperature=0.25)
|
| 419 |
+
# try to extract common shapes
|
| 420 |
+
if isinstance(resp, dict) and "choices" in resp:
|
| 421 |
+
try:
|
| 422 |
+
return True, resp["choices"][0]["message"]["content"]
|
| 423 |
+
except Exception:
|
| 424 |
+
return True, str(resp)
|
| 425 |
+
if isinstance(resp, list) and resp and isinstance(resp[0], dict) and "generated_text" in resp[0]:
|
| 426 |
+
return True, resp[0]["generated_text"]
|
| 427 |
+
return True, str(resp)
|
| 428 |
+
# Some clients have chat.completions.create()
|
| 429 |
+
if hasattr(hf_client, "chat") and hasattr(hf_client.chat, "completions") and hasattr(hf_client.chat.completions, "create"):
|
| 430 |
+
resp = hf_client.chat.completions.create(model=DEFAULT_MODEL, messages=[{"role":"user","content":prompt}], max_tokens=400, temperature=0.25)
|
| 431 |
+
try:
|
| 432 |
+
return True, resp.choices[0].message["content"]
|
| 433 |
+
except Exception:
|
| 434 |
+
return True, str(resp)
|
| 435 |
+
# Last resort: some clients have 'create' on top-level
|
| 436 |
+
if hasattr(hf_client, "create"):
|
| 437 |
+
resp = hf_client.create(model=DEFAULT_MODEL, inputs=prompt, max_new_tokens=400, temperature=0.25)
|
| 438 |
+
if isinstance(resp, dict) and "generated_text" in resp:
|
| 439 |
+
return True, resp["generated_text"]
|
| 440 |
+
return True, str(resp)
|
| 441 |
+
except Exception as e:
|
| 442 |
+
return False, e
|
| 443 |
+
return False, "No known generation method"
|
| 444 |
+
|
| 445 |
+
def generate_answer(context: str, query: str, retrieved_chunks: List[Dict[str, Any]] = None) -> str:
|
| 446 |
+
"""
|
| 447 |
+
Attempt to call HF generation; if that fails, fallback to extractive, citation-backed answer.
|
| 448 |
+
Pass retrieved_chunks (list) so extractive fallback can cite pages.
|
| 449 |
+
"""
|
| 450 |
+
prompt = f"""
|
| 451 |
+
You are a precise academic assistant specialized in university policies.
|
| 452 |
+
Use only the provided USTP Student Handbook content below. If the answer is not in the provided text, respond exactly:
|
| 453 |
+
"The handbook does not specify that."
|
| 454 |
+
|
| 455 |
+
Context:
|
| 456 |
+
{context}
|
| 457 |
+
|
| 458 |
+
Question: {query}
|
| 459 |
+
|
| 460 |
+
Provide a concise answer including source citations (filename + page).
|
| 461 |
+
"""
|
| 462 |
+
success, out = try_hf_generate(prompt)
|
| 463 |
+
if success:
|
| 464 |
+
# if out is not str, ensure str
|
| 465 |
+
return out if isinstance(out, str) else str(out)
|
| 466 |
+
# HF failed (e.g., 402 or no credits) -> extractive fallback
|
| 467 |
+
st.warning("HF generation unavailable β using extractive handbook-backed answer (no hallucination).")
|
| 468 |
+
return extractive_answer_from_chunks(retrieved_chunks or [], query)
|
| 469 |
+
|
| 470 |
+
# =========================
|
| 471 |
+
# Index management (persist/load)
|
| 472 |
+
# =========================
|
| 473 |
+
def ensure_handbook_index(rebuild: bool = False):
|
| 474 |
+
"""
|
| 475 |
+
Create or load index and metadata.
|
| 476 |
+
Stores results in st.session_state as well for quick reuse.
|
| 477 |
+
"""
|
| 478 |
+
# If already built and not rebuilding, return
|
| 479 |
+
if st.session_state.get("handbook_ready") and not rebuild:
|
| 480 |
return
|
| 481 |
|
| 482 |
+
pdfs = find_handbook()
|
| 483 |
if not pdfs:
|
|
|
|
| 484 |
st.session_state.handbook_ready = False
|
| 485 |
+
st.session_state.handbook_chunks = []
|
| 486 |
return
|
| 487 |
|
| 488 |
+
# if saved index exists & not rebuilding
|
| 489 |
+
if not rebuild and os.path.exists(HAND_META_FN) and (faiss is not None and os.path.exists(HAND_INDEX_FN) and os.path.exists(HAND_EMB_DIM_FN)):
|
| 490 |
+
try:
|
| 491 |
+
idx, meta = load_index_and_metadata()
|
| 492 |
+
if meta:
|
| 493 |
+
st.session_state.faiss_index = idx
|
| 494 |
+
st.session_state.metadata = meta
|
| 495 |
+
st.session_state.handbook_ready = True
|
| 496 |
+
st.success(f"Loaded saved index ({len(meta)} chunks).")
|
| 497 |
+
return
|
| 498 |
+
except Exception:
|
| 499 |
+
pass
|
| 500 |
+
|
| 501 |
+
# extract pages -> chunks
|
| 502 |
pages = load_pdf_texts_with_page_info(pdfs)
|
| 503 |
+
chunks = chunk_pages_into_segments(pages, chunk_size=int(chunk_size_chars), overlap=int(chunk_overlap))
|
| 504 |
if not chunks:
|
| 505 |
+
st.error("No text found in PDFs.")
|
| 506 |
+
st.session_state.handbook_ready = False
|
| 507 |
return
|
| 508 |
|
| 509 |
+
# build index (this will attempt HF embeddings -> local -> TFIDF)
|
| 510 |
+
try:
|
| 511 |
+
idx, meta = build_faiss_index(chunks)
|
| 512 |
+
st.session_state.faiss_index = idx
|
| 513 |
+
st.session_state.metadata = meta
|
| 514 |
+
st.session_state.handbook_ready = True
|
| 515 |
+
st.success(f"Indexed {len(meta)} chunks.")
|
| 516 |
+
except Exception as e:
|
| 517 |
+
st.error(f"Failed to build index: {e}")
|
| 518 |
+
# as fallback, store chunks in session
|
| 519 |
+
st.session_state.metadata = chunks
|
| 520 |
+
st.session_state.faiss_index = None
|
| 521 |
+
st.session_state.handbook_ready = True
|
| 522 |
+
|
| 523 |
+
# build / load index
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 524 |
ensure_handbook_index(rebuild=regenerate_index)
|
| 525 |
|
| 526 |
+
# =========================
|
| 527 |
+
# Chat UI
|
| 528 |
+
# =========================
|
| 529 |
st.divider()
|
| 530 |
+
st.subheader("π¬ Ask the handbook (only handbook-based answers)")
|
| 531 |
|
| 532 |
+
if "chat_history" not in st.session_state:
|
| 533 |
+
st.session_state.chat_history = []
|
|
|
|
| 534 |
|
| 535 |
+
# Input and handling
|
| 536 |
+
user_query = st.chat_input("Ask a question about the handbook...")
|
| 537 |
+
if user_query:
|
| 538 |
+
ts = int(time.time() * 1000)
|
| 539 |
+
st.session_state.chat_history.append({"role": "user", "content": user_query, "ts": ts})
|
| 540 |
+
# Retrieve top chunks
|
| 541 |
+
index = st.session_state.get("faiss_index")
|
| 542 |
+
metadata = st.session_state.get("metadata", [])
|
| 543 |
+
with st.spinner("π Retrieving relevant handbook excerpts..."):
|
| 544 |
+
retrieved, scores = retrieve_top_chunks(user_query, k=int(top_k), metadata=metadata, index=index)
|
| 545 |
+
# Reject if no good match
|
| 546 |
+
if not retrieved or (scores and max(scores) < float(similarity_threshold)):
|
| 547 |
+
reply = "Sorry, I can only answer questions based on the school's handbook. I couldn't find relevant information in the handbook for your question."
|
| 548 |
+
st.session_state.chat_history.append({"role": "assistant", "content": reply, "ts": int(time.time() * 1000)})
|
| 549 |
else:
|
| 550 |
+
# Build context snippet for model (concise)
|
| 551 |
+
context_text = "\n\n".join([f"--- {r['chunk_id']} | {r['filename']} | page {r['page']} ---\n{r['content']}" if 'chunk_id' in r else f"(Page {r.get('page')})\n{r.get('content')}" for r in retrieved])
|
| 552 |
+
# Query model or fallback extractive
|
| 553 |
+
with st.spinner("π€ Generating answer..."):
|
| 554 |
+
ans = generate_answer(context_text, user_query, retrieved_chunks=retrieved)
|
| 555 |
+
# Append citation block
|
| 556 |
+
citations = "\n".join([f"{r.get('chunk_id', 'n/a')} β {r.get('filename')} p{r.get('page')} (score {float(s):.3f})" for r, s in zip(retrieved, scores or [])])
|
| 557 |
+
final = f"{ans}\n\n**Retrieved sources (top results):**\n{citations}"
|
| 558 |
+
st.session_state.chat_history.append({"role": "assistant", "content": final, "ts": int(time.time() * 1000)})
|
| 559 |
+
|
| 560 |
+
# Display chat history with unique keys
|
| 561 |
st.divider()
|
| 562 |
+
st.subheader("Conversation")
|
| 563 |
+
for i, entry in enumerate(st.session_state.chat_history):
|
| 564 |
+
is_user = entry.get("role") == "user"
|
| 565 |
+
# use ts and i to ensure uniqueness across identical messages
|
| 566 |
+
key = f"msg_{i}_{entry.get('ts',0)}"
|
| 567 |
+
st_message(entry["content"], is_user=is_user, key=key)
|
| 568 |
+
|
| 569 |
+
# Toolbar
|
| 570 |
+
st.divider()
|
| 571 |
+
col1, col2 = st.columns([1, 1])
|
| 572 |
+
with col1:
|
| 573 |
+
if st.button("π Reset chat"):
|
| 574 |
+
st.session_state.chat_history = []
|
| 575 |
+
st.success("Chat reset.")
|
| 576 |
+
with col2:
|
| 577 |
+
transcript = "\n\n".join([f"{m['role'].upper()}: {m['content']}" for m in st.session_state.chat_history])
|
| 578 |
+
st.download_button("π₯ Download transcript", data=transcript, file_name="handbook_transcript.txt")
|
| 579 |
+
|
| 580 |
+
st.caption("β‘ FAISS + Local embeddings + Hugging Face (when available). Default model: Qwen 2.5 14B")
|