Spaces:
Sleeping
Sleeping
| import sys | |
| import torch | |
| import pytest | |
| from pathlib import Path | |
| from unittest.mock import patch, MagicMock | |
| # Add repo root to sys.path | |
| BASE_DIR = Path(__file__).resolve().parent.parent | |
| if BASE_DIR not in sys.path: | |
| sys.path.append(BASE_DIR) | |
| from src.multimodal_model import MediLLMModel | |
| BATCH_SIZE = 2 | |
| SEQ_LEN = 128 | |
| IMAGE_SIZE = (3, 224, 224) | |
| def dummy_inputs(): | |
| return { | |
| "input_ids": torch.randint(0, 30522, (BATCH_SIZE, SEQ_LEN)), # dummy token IDs | |
| "attention_mask": torch.ones(BATCH_SIZE, SEQ_LEN), | |
| "image": torch.randn(BATCH_SIZE, *IMAGE_SIZE), | |
| } | |
| def test_text_only(mock_create_model, mock_auto_model, dummy_inputs): | |
| # Mock text encoder | |
| mock_text_encoder = MagicMock() | |
| mock_text_encoder.config.hidden_size = 768 | |
| mock_text_encoder.return_value = MagicMock( | |
| last_hidden_state=torch.randn(BATCH_SIZE, SEQ_LEN, 768) | |
| ) | |
| mock_auto_model.return_value = mock_text_encoder | |
| model = MediLLMModel(mode="text") | |
| model.eval() | |
| outputs = model( | |
| input_ids=dummy_inputs["input_ids"], | |
| attention_mask=dummy_inputs["attention_mask"] | |
| ) | |
| assert outputs.shape == (BATCH_SIZE, 3) | |
| probs = torch.softmax(outputs, dim=1) | |
| assert torch.allclose(probs.sum(dim=1), torch.ones(BATCH_SIZE), atol=1e-5) | |
| def test_image_only(mock_create_model, mock_auto_model, dummy_inputs): | |
| # Mock image encoder | |
| mock_image_encoder = MagicMock() | |
| mock_image_encoder.num_features = 2048 | |
| mock_image_encoder.return_value = torch.randn(BATCH_SIZE, 2048) | |
| mock_create_model.return_value = mock_image_encoder | |
| model = MediLLMModel(mode="image") | |
| model.eval() | |
| outputs = model(image=dummy_inputs["image"]) | |
| assert outputs.shape == (BATCH_SIZE, 3) | |
| probs = torch.softmax(outputs, dim=1) | |
| assert torch.allclose(probs.sum(dim=1), torch.ones(BATCH_SIZE), atol=1e-5) | |
| def test_multimodal(mock_create_model, mock_auto_model, dummy_inputs): | |
| # Mock text encoder | |
| mock_text_encoder = MagicMock() | |
| mock_text_encoder.config.hidden_size = 768 | |
| mock_text_encoder.return_value = MagicMock( | |
| last_hidden_state=torch.randn(BATCH_SIZE, SEQ_LEN, 768) | |
| ) | |
| mock_auto_model.return_value = mock_text_encoder | |
| # Mock image encoder | |
| mock_image_encoder = MagicMock() | |
| mock_image_encoder.num_features = 2048 | |
| mock_image_encoder.return_value = torch.randn(BATCH_SIZE, 2048) | |
| mock_create_model.return_value = mock_image_encoder | |
| model = MediLLMModel(mode="multimodal") | |
| model.eval() | |
| outputs = model( | |
| input_ids=dummy_inputs["input_ids"], | |
| attention_mask=dummy_inputs["attention_mask"], | |
| image=dummy_inputs["image"], | |
| ) | |
| assert outputs.shape == (BATCH_SIZE, 3) | |
| probs = torch.softmax(outputs, dim=1) | |
| assert torch.allclose(probs.sum(dim=1), torch.ones(BATCH_SIZE), atol=1e-5) | |