import sys import torch import pytest from pathlib import Path from unittest.mock import patch, MagicMock # Add repo root to sys.path BASE_DIR = Path(__file__).resolve().parent.parent if BASE_DIR not in sys.path: sys.path.append(BASE_DIR) from src.multimodal_model import MediLLMModel BATCH_SIZE = 2 SEQ_LEN = 128 IMAGE_SIZE = (3, 224, 224) @pytest.fixture def dummy_inputs(): return { "input_ids": torch.randint(0, 30522, (BATCH_SIZE, SEQ_LEN)), # dummy token IDs "attention_mask": torch.ones(BATCH_SIZE, SEQ_LEN), "image": torch.randn(BATCH_SIZE, *IMAGE_SIZE), } @patch("src.multimodal_model.AutoModel.from_pretrained") @patch("src.multimodal_model.timm.create_model") def test_text_only(mock_create_model, mock_auto_model, dummy_inputs): # Mock text encoder mock_text_encoder = MagicMock() mock_text_encoder.config.hidden_size = 768 mock_text_encoder.return_value = MagicMock( last_hidden_state=torch.randn(BATCH_SIZE, SEQ_LEN, 768) ) mock_auto_model.return_value = mock_text_encoder model = MediLLMModel(mode="text") model.eval() outputs = model( input_ids=dummy_inputs["input_ids"], attention_mask=dummy_inputs["attention_mask"] ) assert outputs.shape == (BATCH_SIZE, 3) probs = torch.softmax(outputs, dim=1) assert torch.allclose(probs.sum(dim=1), torch.ones(BATCH_SIZE), atol=1e-5) @patch("src.multimodal_model.AutoModel.from_pretrained") @patch("src.multimodal_model.timm.create_model") def test_image_only(mock_create_model, mock_auto_model, dummy_inputs): # Mock image encoder mock_image_encoder = MagicMock() mock_image_encoder.num_features = 2048 mock_image_encoder.return_value = torch.randn(BATCH_SIZE, 2048) mock_create_model.return_value = mock_image_encoder model = MediLLMModel(mode="image") model.eval() outputs = model(image=dummy_inputs["image"]) assert outputs.shape == (BATCH_SIZE, 3) probs = torch.softmax(outputs, dim=1) assert torch.allclose(probs.sum(dim=1), torch.ones(BATCH_SIZE), atol=1e-5) @patch("src.multimodal_model.AutoModel.from_pretrained") @patch("src.multimodal_model.timm.create_model") def test_multimodal(mock_create_model, mock_auto_model, dummy_inputs): # Mock text encoder mock_text_encoder = MagicMock() mock_text_encoder.config.hidden_size = 768 mock_text_encoder.return_value = MagicMock( last_hidden_state=torch.randn(BATCH_SIZE, SEQ_LEN, 768) ) mock_auto_model.return_value = mock_text_encoder # Mock image encoder mock_image_encoder = MagicMock() mock_image_encoder.num_features = 2048 mock_image_encoder.return_value = torch.randn(BATCH_SIZE, 2048) mock_create_model.return_value = mock_image_encoder model = MediLLMModel(mode="multimodal") model.eval() outputs = model( input_ids=dummy_inputs["input_ids"], attention_mask=dummy_inputs["attention_mask"], image=dummy_inputs["image"], ) assert outputs.shape == (BATCH_SIZE, 3) probs = torch.softmax(outputs, dim=1) assert torch.allclose(probs.sum(dim=1), torch.ones(BATCH_SIZE), atol=1e-5)