medi-llm / app /utils /inference_utils.py
Preetham22's picture
Change HF_WEIGTHS_REV to be either branch name or None never empty
131cb13
import os
import sys
import torch
import yaml
import numpy as np
from pathlib import Path
from transformers import AutoTokenizer
from torchvision import transforms
from huggingface_hub import hf_hub_download
ROOT_DIR = Path(__file__).resolve().parent.parent.parent
sys.path.append(str(ROOT_DIR))
from src.multimodal_model import MediLLMModel
from app.utils.gradcam_utils import register_hooks, generate_gradcam
# --------------------
# Runtime / Hub config
# --------------------
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Map modes -> filenames in HF model repo
HF_MODEL_REPO = os.getenv("HF_MODEL_REPO", "Preetham22/medi-llm-weights")
_raw_rev = os.getenv("HF_WEIGHTS_REV", None)
HF_WEIGHTS_REV = _raw_rev if (_raw_rev and _raw_rev.strip()) else None # optional (commit/tag/branch), can be None
FILENAMES = {
"text": "medi_llm_state_dict_text.pth",
"image": "medi_llm_state_dict_image.pth",
"multimodal": "medi_llm_state_dict_multimodal.pth",
}
def have_internet():
try:
import socket
socket.create_connection(("huggingface.co", 443), timeout=3).close()
return True
except Exception:
return False
def resolve_weights_path(mode: str) -> str:
"""Download (or reuse cached) weights for the given mode from HF Hub."""
if mode not in FILENAMES:
raise ValueError(f"Unknown mode '{mode}'. Expected one of {list(FILENAMES)}.")
filename = FILENAMES[mode]
# 1) Prefer a file already present in Space rep
local_path = ROOT_DIR / filename
if local_path.exists():
return str(local_path)
# 2) If no local file and no internet, bail early
if not have_internet():
raise RuntimeError(
f"❌ Internet is disabled and weights are not present locally.\n"
f" Upload '{filename}' to this Space or enable Network access."
)
# 3) Otherwise, download from Hub
try:
return hf_hub_download(
repo_id=HF_MODEL_REPO,
filename=filename,
revision=HF_WEIGHTS_REV, # can be None -> default branch
repo_type="model", # change to "dataset" if needed
local_dir=str(ROOT_DIR), # Keep a copy in repo dir
local_dir_use_symlinks=False, # avoid symlink weirdness
token=None, # For public repo
)
except Exception as e:
raise RuntimeError(
f"Failed to fetch weights '{filename}' from repo '{HF_MODEL_REPO}'. "
f"Either enable Network access for this Space or commit the file locally. "
f"Original error: {e}"
)
# ----------------------
# Labels / preprocessing
# ----------------------
inv_map = {0: "low", 1: "medium", 2: "high"}
# Tokenizer and image transform
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
image_transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop(224),
transforms.ToTensor()
])
# ----------------------
# Model load
# ----------------------
def _safe_torch_load(path: str, map_location: torch.device):
"""
Prefer weights_only=True (newer Pytorch), but fall back if not supported.
"""
try:
return torch.load(path, map_location=map_location, weights_only=True) # PyTorch >= 2.2/2.3
except TypeError:
return torch.load(path, map_location=map_location)
def load_model(mode: str, config_path: str = str(Path("config/config.yaml").resolve())):
"""
Load MediLLMModel for the given mode and populate weights from HF Hub.
Expects config/config.yaml with keys per mode (dropout, hidden_dim).
"""
with open(config_path, "r") as f:
cfg_all = yaml.safe_load(f)
if mode not in cfg_all:
raise KeyError(f"Mode '{mode}' not found in {config_path}. Keys: {list(cfg_all.keys())}")
config = cfg_all[mode]
# Build model
model = MediLLMModel(
mode=mode,
dropout=config["dropout"],
hidden_dim=config["hidden_dim"]
)
# Download weights & load
weights_path = resolve_weights_path(mode)
state = _safe_torch_load(weights_path, map_location=DEVICE)
# Sometimes checkpoints save as {'state_dict': ...}
if isinstance(state, dict) and "state_dict" in state:
state = state["state_dict"]
try:
model.load_state_dict(state) # strict by default
except RuntimeError as e:
# allow non-strict if minor mismatches (buffer names)
try:
model.load_state_dict(state, strict=False)
print(f"⚠️ Loaded with strict=False due to: {e}")
except Exception:
raise
model.to(DEVICE)
model.eval()
return model
# -----------------------
# Attention rollout utils
# -----------------------
def attention_rollout(attentions, last_k=4, residual_alpha=0.5):
"""
attentions_tuple: tuple/list of layer attentions; each is (B,H,S,S)
last_k: only roll back through the last k layers (keeps contrast)
residual_alpha: how much identity to add before normalizing (preserve token self-info)
returns: [B, S, S] rollout matrix, or None if input is invalid
"""
if attentions is None:
return None
if isinstance(attentions, (list, tuple)) and len(attentions) == 0:
return None
first = attentions[0]
if first is None or first.ndim != 4:
return None # expect [B, H, S, S]
B, H, S, _ = first.shape
eye = torch.eye(S, device=first.device).unsqueeze(0).expand(B, S, S) # [B, S, S]
L = len(attentions)
if last_k is None:
last_k = L
if last_k <= 0:
# No layers selected -> return identity (no propagation)
return eye.clone()
start = max(0, L - last_k)
A = None
for layer in range(start, L):
a = attentions[layer]
if a is None or a.ndim != 4 or a.shape[0] != B or a.shape[-1] != S:
# Skip malformed layer
continue
a = a.mean(dim=1) # [B, S, S] (avg heads)
a = a + float(residual_alpha) * eye
a = a / (a.sum(dim=-1, keepdim=True) + 1e-12) # row-normalize
A = a if A is None else torch.bmm(A, a)
# if we never multiplied like when all layers skipped, fall back to identity
return A if A is not None else eye.clone() # [B,S,S]
def merge_wordpieces(tokens, scores):
merged_tokens, merged_scores = [], []
cur_tok, cur_scores = "", []
for t, s in zip(tokens, scores):
if t.startswith("##"):
cur_tok += t[2:]
cur_scores.append(s)
else:
if cur_tok:
merged_tokens.append(cur_tok)
merged_scores.append(sum(cur_scores) / max(1, len(cur_scores)))
cur_tok, cur_scores = t, [s]
if cur_tok:
merged_tokens.append(cur_tok)
merged_scores.append(sum(cur_scores) / max(1, len(cur_scores)))
return merged_tokens, merged_scores
def _normalize_for_display_wordlevel(attn_scores, normalize_mode="visual", temperature=0.30):
"""
Convert raw *word-level* token scores into:
- probabilistic mode: probabilities that sum to 1.0 (100%), with labels like "0.237 | 23.7% (contrib)"
- visual mode: min-max + gamma scaling (contrast, not sum-to-100), with labels like "0.68 | visual score"
Returns:
attn_final: np.ndarray of floats in [0, 1] for color scale
labels: list[str] per token (tooltip text; first number stays up front for your color_map bucketing)
"""
attn_array = np.array(attn_scores, dtype=float)
if normalize_mode == "probabilistic":
# ---- percentage view that sums up to 100% ----
attn_array = np.maximum(attn_array, 0.0)
if attn_array.max() > 0:
attn_array = attn_array / (attn_array.max() + 1e-12) # scale to [0, 1] for stability
# sharpen (lower temp => peakier)
attn_array = np.power(attn_array + 1e-12, 1.0 / max(1e-6, float(temperature)))
prob = attn_array / (attn_array.sum() + 1e-12)
percent = prob * 100.0
# keep prob (0..1) for color scale; label with % contrib
labels = [f"{prob[i]:.3f} | {percent[i]:.1f}% (contrib)" for i in range(len(prob))]
return prob, labels
else:
# ---- visual: min-max + gamma (contrast, not sum-to-100) ---
if attn_array.max() > attn_array.min():
attn_array0 = (attn_array - attn_array.min()) / (attn_array.max() - attn_array.min() + 1e-8)
attn_array0 = np.clip(np.power(attn_array0, 0.75), 0.1, 1.0)
else:
attn_array0 = np.zeros_like(attn_array)
labels = [f"{attn_array0[i]:.2f} | visual score" for i in range(len(attn_array0))]
return attn_array0, labels
# ------------------
# Prediction
# ------------------
def predict(
model,
mode,
emr_text=None,
image=None,
normalize_mode="visual",
need_token_vis=False,
use_rollout=False
):
"""
normalize_mode: "visual" (min-max + gamma boost) or "probabilistic" (softmax)
need_token_vis: request/compute token-level attentions (Doctor mode + text/multimodal)
use_rollout: use attention rollout across layers
"""
input_ids = attention_mask = img_tensor = None
cam_image = None
highlighted_tokens = None
top5 = []
if mode in ["text", "multimodal"] and emr_text:
text_tokens = tokenizer(
emr_text,
return_tensors="pt",
truncation=True,
padding="max_length",
max_length=128,
)
input_ids = text_tokens["input_ids"].to(DEVICE)
attention_mask = text_tokens["attention_mask"].to(DEVICE)
if mode in ["image", "multimodal"] and image:
img_tensor = image_transform(image).unsqueeze(0).to(DEVICE)
# Only Register hooks for Grad-CAM if needed
if mode in ["image", "multimodal"]:
activations, gradients, fwd_handle, bwd_handle = register_hooks(model)
model.zero_grad()
# === Forward ===
# Only enable attentions when planning to visualize them
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask,
image=img_tensor,
output_attentions=bool(need_token_vis and (mode in ["text", "multimodal"])),
return_raw_attentions=bool(use_rollout and need_token_vis)
)
logits = outputs["logits"]
if logits.numel() == 0:
raise ValueError("Model returned empty logits. Check input format.")
probs = torch.softmax(logits, dim=1)
pred = torch.argmax(probs, dim=1).item()
confidence = probs.squeeze()[pred].item()
# === Grad-CAM ===
if mode in ["image", "multimodal"]:
# Enable gradients only for Grad-CAM
logits[0, pred].backward(retain_graph=True)
cam_image = generate_gradcam(image, activations, gradients)
fwd_handle.remove()
bwd_handle.remove()
# === Token-level attention ===
if need_token_vis and (mode in ["text", "multimodal"]):
token_attn_scores = None
if use_rollout and outputs.get("raw_attentions") is not None:
# partial rollout
# roll: [B, S, S]; roll[b, 0, :] is CLS-to-all tokens for that batch item
roll = attention_rollout(outputs["raw_attentions"], last_k=4, residual_alpha=0.5) # [B,S,S] # (S, S)
if roll is not None:
# roll: [B, S, S]; pick CLS row (index 0)
cls_to_tokens = roll[0, 0].detach().cpu().numpy().tolist() # CLS row
token_attn_scores = cls_to_tokens
elif outputs.get("token_attentions") is not None:
token_attn_scores = outputs["token_attentions"].squeeze().tolist()
if token_attn_scores is not None:
# Filter out specials/pad + aligh to wordpieces
ids = input_ids[0].tolist()
amask = attention_mask[0].tolist() if attention_mask is not None else [1] * len(ids)
wp_all = tokenizer.convert_ids_to_tokens(ids, skip_special_tokens=False)
special_ids = set(tokenizer.all_special_ids)
keep_idx = [i for i, (tid, m) in enumerate(zip(ids, amask)) if (tid not in special_ids) and (m == 1)]
wp_tokens = [wp_all[i] for i in keep_idx]
wp_scores = [token_attn_scores[i] if i < len(token_attn_scores) else 0.0 for i in keep_idx]
# Merge wordpieces into words
word_tokens, attn_scores = merge_wordpieces(wp_tokens, wp_scores)
# Build Top-5 (probabilistic normalization for ranking)
_probs_for_rank, _ = _normalize_for_display_wordlevel(
attn_scores, normalize_mode="probabilistic", temperature=0.30
)
pairs = list(zip(word_tokens, _probs_for_rank))
pairs.sort(key=lambda x: x[1], reverse=True)
top5 = [(tok, float(p * 100.0)) for tok, p in pairs[:5]]
# Final display (probabilistic or visual)
attn_final, labels = _normalize_for_display_wordlevel(
attn_scores,
normalize_mode=normalize_mode,
temperature=0.30,
)
highlighted_tokens = [(tok, labels[i]) for i, tok in enumerate(word_tokens)]
print("🧪 Normalization Mode Received:", normalize_mode)
if highlighted_tokens:
print("🟣 Highlighted tokens sample:", highlighted_tokens[:5])
else:
print("🟣 No highlighted tokens (no text or attentions unavailable).")
return inv_map[pred], cam_image, highlighted_tokens, confidence, probs.tolist(), top5