Spaces:
Sleeping
Sleeping
File size: 13,624 Bytes
1ff0d2d 43dc105 42e56c5 43dc105 1ff0d2d 43dc105 42e56c5 1ff0d2d 43dc105 1ff0d2d 131cb13 371f394 1ff0d2d 371f394 1ff0d2d 371f394 1ff0d2d 371f394 1ff0d2d 371f394 131cb13 1ff0d2d 131cb13 1ff0d2d 371f394 1ff0d2d 43dc105 1ff0d2d 43dc105 1ff0d2d 43dc105 1ff0d2d 43dc105 1ff0d2d 43dc105 1ff0d2d 42e56c5 1ff0d2d 42e56c5 43dc105 42e56c5 43dc105 42e56c5 43dc105 42e56c5 43dc105 42e56c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import os
import sys
import torch
import yaml
import numpy as np
from pathlib import Path
from transformers import AutoTokenizer
from torchvision import transforms
from huggingface_hub import hf_hub_download
ROOT_DIR = Path(__file__).resolve().parent.parent.parent
sys.path.append(str(ROOT_DIR))
from src.multimodal_model import MediLLMModel
from app.utils.gradcam_utils import register_hooks, generate_gradcam
# --------------------
# Runtime / Hub config
# --------------------
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Map modes -> filenames in HF model repo
HF_MODEL_REPO = os.getenv("HF_MODEL_REPO", "Preetham22/medi-llm-weights")
_raw_rev = os.getenv("HF_WEIGHTS_REV", None)
HF_WEIGHTS_REV = _raw_rev if (_raw_rev and _raw_rev.strip()) else None # optional (commit/tag/branch), can be None
FILENAMES = {
"text": "medi_llm_state_dict_text.pth",
"image": "medi_llm_state_dict_image.pth",
"multimodal": "medi_llm_state_dict_multimodal.pth",
}
def have_internet():
try:
import socket
socket.create_connection(("huggingface.co", 443), timeout=3).close()
return True
except Exception:
return False
def resolve_weights_path(mode: str) -> str:
"""Download (or reuse cached) weights for the given mode from HF Hub."""
if mode not in FILENAMES:
raise ValueError(f"Unknown mode '{mode}'. Expected one of {list(FILENAMES)}.")
filename = FILENAMES[mode]
# 1) Prefer a file already present in Space rep
local_path = ROOT_DIR / filename
if local_path.exists():
return str(local_path)
# 2) If no local file and no internet, bail early
if not have_internet():
raise RuntimeError(
f"❌ Internet is disabled and weights are not present locally.\n"
f" Upload '{filename}' to this Space or enable Network access."
)
# 3) Otherwise, download from Hub
try:
return hf_hub_download(
repo_id=HF_MODEL_REPO,
filename=filename,
revision=HF_WEIGHTS_REV, # can be None -> default branch
repo_type="model", # change to "dataset" if needed
local_dir=str(ROOT_DIR), # Keep a copy in repo dir
local_dir_use_symlinks=False, # avoid symlink weirdness
token=None, # For public repo
)
except Exception as e:
raise RuntimeError(
f"Failed to fetch weights '{filename}' from repo '{HF_MODEL_REPO}'. "
f"Either enable Network access for this Space or commit the file locally. "
f"Original error: {e}"
)
# ----------------------
# Labels / preprocessing
# ----------------------
inv_map = {0: "low", 1: "medium", 2: "high"}
# Tokenizer and image transform
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
image_transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop(224),
transforms.ToTensor()
])
# ----------------------
# Model load
# ----------------------
def _safe_torch_load(path: str, map_location: torch.device):
"""
Prefer weights_only=True (newer Pytorch), but fall back if not supported.
"""
try:
return torch.load(path, map_location=map_location, weights_only=True) # PyTorch >= 2.2/2.3
except TypeError:
return torch.load(path, map_location=map_location)
def load_model(mode: str, config_path: str = str(Path("config/config.yaml").resolve())):
"""
Load MediLLMModel for the given mode and populate weights from HF Hub.
Expects config/config.yaml with keys per mode (dropout, hidden_dim).
"""
with open(config_path, "r") as f:
cfg_all = yaml.safe_load(f)
if mode not in cfg_all:
raise KeyError(f"Mode '{mode}' not found in {config_path}. Keys: {list(cfg_all.keys())}")
config = cfg_all[mode]
# Build model
model = MediLLMModel(
mode=mode,
dropout=config["dropout"],
hidden_dim=config["hidden_dim"]
)
# Download weights & load
weights_path = resolve_weights_path(mode)
state = _safe_torch_load(weights_path, map_location=DEVICE)
# Sometimes checkpoints save as {'state_dict': ...}
if isinstance(state, dict) and "state_dict" in state:
state = state["state_dict"]
try:
model.load_state_dict(state) # strict by default
except RuntimeError as e:
# allow non-strict if minor mismatches (buffer names)
try:
model.load_state_dict(state, strict=False)
print(f"⚠️ Loaded with strict=False due to: {e}")
except Exception:
raise
model.to(DEVICE)
model.eval()
return model
# -----------------------
# Attention rollout utils
# -----------------------
def attention_rollout(attentions, last_k=4, residual_alpha=0.5):
"""
attentions_tuple: tuple/list of layer attentions; each is (B,H,S,S)
last_k: only roll back through the last k layers (keeps contrast)
residual_alpha: how much identity to add before normalizing (preserve token self-info)
returns: [B, S, S] rollout matrix, or None if input is invalid
"""
if attentions is None:
return None
if isinstance(attentions, (list, tuple)) and len(attentions) == 0:
return None
first = attentions[0]
if first is None or first.ndim != 4:
return None # expect [B, H, S, S]
B, H, S, _ = first.shape
eye = torch.eye(S, device=first.device).unsqueeze(0).expand(B, S, S) # [B, S, S]
L = len(attentions)
if last_k is None:
last_k = L
if last_k <= 0:
# No layers selected -> return identity (no propagation)
return eye.clone()
start = max(0, L - last_k)
A = None
for layer in range(start, L):
a = attentions[layer]
if a is None or a.ndim != 4 or a.shape[0] != B or a.shape[-1] != S:
# Skip malformed layer
continue
a = a.mean(dim=1) # [B, S, S] (avg heads)
a = a + float(residual_alpha) * eye
a = a / (a.sum(dim=-1, keepdim=True) + 1e-12) # row-normalize
A = a if A is None else torch.bmm(A, a)
# if we never multiplied like when all layers skipped, fall back to identity
return A if A is not None else eye.clone() # [B,S,S]
def merge_wordpieces(tokens, scores):
merged_tokens, merged_scores = [], []
cur_tok, cur_scores = "", []
for t, s in zip(tokens, scores):
if t.startswith("##"):
cur_tok += t[2:]
cur_scores.append(s)
else:
if cur_tok:
merged_tokens.append(cur_tok)
merged_scores.append(sum(cur_scores) / max(1, len(cur_scores)))
cur_tok, cur_scores = t, [s]
if cur_tok:
merged_tokens.append(cur_tok)
merged_scores.append(sum(cur_scores) / max(1, len(cur_scores)))
return merged_tokens, merged_scores
def _normalize_for_display_wordlevel(attn_scores, normalize_mode="visual", temperature=0.30):
"""
Convert raw *word-level* token scores into:
- probabilistic mode: probabilities that sum to 1.0 (100%), with labels like "0.237 | 23.7% (contrib)"
- visual mode: min-max + gamma scaling (contrast, not sum-to-100), with labels like "0.68 | visual score"
Returns:
attn_final: np.ndarray of floats in [0, 1] for color scale
labels: list[str] per token (tooltip text; first number stays up front for your color_map bucketing)
"""
attn_array = np.array(attn_scores, dtype=float)
if normalize_mode == "probabilistic":
# ---- percentage view that sums up to 100% ----
attn_array = np.maximum(attn_array, 0.0)
if attn_array.max() > 0:
attn_array = attn_array / (attn_array.max() + 1e-12) # scale to [0, 1] for stability
# sharpen (lower temp => peakier)
attn_array = np.power(attn_array + 1e-12, 1.0 / max(1e-6, float(temperature)))
prob = attn_array / (attn_array.sum() + 1e-12)
percent = prob * 100.0
# keep prob (0..1) for color scale; label with % contrib
labels = [f"{prob[i]:.3f} | {percent[i]:.1f}% (contrib)" for i in range(len(prob))]
return prob, labels
else:
# ---- visual: min-max + gamma (contrast, not sum-to-100) ---
if attn_array.max() > attn_array.min():
attn_array0 = (attn_array - attn_array.min()) / (attn_array.max() - attn_array.min() + 1e-8)
attn_array0 = np.clip(np.power(attn_array0, 0.75), 0.1, 1.0)
else:
attn_array0 = np.zeros_like(attn_array)
labels = [f"{attn_array0[i]:.2f} | visual score" for i in range(len(attn_array0))]
return attn_array0, labels
# ------------------
# Prediction
# ------------------
def predict(
model,
mode,
emr_text=None,
image=None,
normalize_mode="visual",
need_token_vis=False,
use_rollout=False
):
"""
normalize_mode: "visual" (min-max + gamma boost) or "probabilistic" (softmax)
need_token_vis: request/compute token-level attentions (Doctor mode + text/multimodal)
use_rollout: use attention rollout across layers
"""
input_ids = attention_mask = img_tensor = None
cam_image = None
highlighted_tokens = None
top5 = []
if mode in ["text", "multimodal"] and emr_text:
text_tokens = tokenizer(
emr_text,
return_tensors="pt",
truncation=True,
padding="max_length",
max_length=128,
)
input_ids = text_tokens["input_ids"].to(DEVICE)
attention_mask = text_tokens["attention_mask"].to(DEVICE)
if mode in ["image", "multimodal"] and image:
img_tensor = image_transform(image).unsqueeze(0).to(DEVICE)
# Only Register hooks for Grad-CAM if needed
if mode in ["image", "multimodal"]:
activations, gradients, fwd_handle, bwd_handle = register_hooks(model)
model.zero_grad()
# === Forward ===
# Only enable attentions when planning to visualize them
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask,
image=img_tensor,
output_attentions=bool(need_token_vis and (mode in ["text", "multimodal"])),
return_raw_attentions=bool(use_rollout and need_token_vis)
)
logits = outputs["logits"]
if logits.numel() == 0:
raise ValueError("Model returned empty logits. Check input format.")
probs = torch.softmax(logits, dim=1)
pred = torch.argmax(probs, dim=1).item()
confidence = probs.squeeze()[pred].item()
# === Grad-CAM ===
if mode in ["image", "multimodal"]:
# Enable gradients only for Grad-CAM
logits[0, pred].backward(retain_graph=True)
cam_image = generate_gradcam(image, activations, gradients)
fwd_handle.remove()
bwd_handle.remove()
# === Token-level attention ===
if need_token_vis and (mode in ["text", "multimodal"]):
token_attn_scores = None
if use_rollout and outputs.get("raw_attentions") is not None:
# partial rollout
# roll: [B, S, S]; roll[b, 0, :] is CLS-to-all tokens for that batch item
roll = attention_rollout(outputs["raw_attentions"], last_k=4, residual_alpha=0.5) # [B,S,S] # (S, S)
if roll is not None:
# roll: [B, S, S]; pick CLS row (index 0)
cls_to_tokens = roll[0, 0].detach().cpu().numpy().tolist() # CLS row
token_attn_scores = cls_to_tokens
elif outputs.get("token_attentions") is not None:
token_attn_scores = outputs["token_attentions"].squeeze().tolist()
if token_attn_scores is not None:
# Filter out specials/pad + aligh to wordpieces
ids = input_ids[0].tolist()
amask = attention_mask[0].tolist() if attention_mask is not None else [1] * len(ids)
wp_all = tokenizer.convert_ids_to_tokens(ids, skip_special_tokens=False)
special_ids = set(tokenizer.all_special_ids)
keep_idx = [i for i, (tid, m) in enumerate(zip(ids, amask)) if (tid not in special_ids) and (m == 1)]
wp_tokens = [wp_all[i] for i in keep_idx]
wp_scores = [token_attn_scores[i] if i < len(token_attn_scores) else 0.0 for i in keep_idx]
# Merge wordpieces into words
word_tokens, attn_scores = merge_wordpieces(wp_tokens, wp_scores)
# Build Top-5 (probabilistic normalization for ranking)
_probs_for_rank, _ = _normalize_for_display_wordlevel(
attn_scores, normalize_mode="probabilistic", temperature=0.30
)
pairs = list(zip(word_tokens, _probs_for_rank))
pairs.sort(key=lambda x: x[1], reverse=True)
top5 = [(tok, float(p * 100.0)) for tok, p in pairs[:5]]
# Final display (probabilistic or visual)
attn_final, labels = _normalize_for_display_wordlevel(
attn_scores,
normalize_mode=normalize_mode,
temperature=0.30,
)
highlighted_tokens = [(tok, labels[i]) for i, tok in enumerate(word_tokens)]
print("🧪 Normalization Mode Received:", normalize_mode)
if highlighted_tokens:
print("🟣 Highlighted tokens sample:", highlighted_tokens[:5])
else:
print("🟣 No highlighted tokens (no text or attentions unavailable).")
return inv_map[pred], cam_image, highlighted_tokens, confidence, probs.tolist(), top5
|