Lineage-graph-accelerator / LOCAL_SETUP.md
aamanlamba's picture
first version - lineage extractor
60ac2eb

A newer version of the Gradio SDK is available: 6.1.0

Upgrade

Local Setup Guide - Lineage Graph Extractor

This guide provides detailed instructions for setting up and running the Lineage Graph Extractor agent locally.

Table of Contents

  1. System Requirements
  2. Installation Methods
  3. Configuration
  4. Usage Scenarios
  5. Advanced Configuration
  6. Troubleshooting

System Requirements

Minimum Requirements

  • OS: Windows 10+, macOS 10.15+, or Linux
  • Python: 3.9 or higher
  • Memory: 2GB RAM minimum
  • Disk Space: 100MB for agent files

Recommended Requirements

  • Python: 3.10+
  • Memory: 4GB RAM
  • Internet: Stable connection for API calls

Installation Methods

Method 1: Standalone Use (Recommended)

This method uses the agent configuration files with any platform that supports the Anthropic API.

  1. Download the agent

    # If you have a git repository
    git clone <repository-url>
    cd local_clone
    
    # Or extract from downloaded archive
    unzip lineage-graph-extractor.zip
    cd lineage-graph-extractor
    
  2. Set up environment

    # Copy environment template
    cp .env.example .env
    
  3. Edit .env file

    # Edit with your preferred editor
    nano .env
    # or
    vim .env
    # or
    code .env  # VS Code
    

    Add your credentials:

    ANTHROPIC_API_KEY=sk-ant-your-key-here
    GOOGLE_CLOUD_PROJECT=your-gcp-project
    GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account.json
    
  4. Install Python dependencies (optional, for examples)

    pip install anthropic google-cloud-bigquery requests pyyaml
    

Method 2: Claude Desktop Integration

If you're using Claude Desktop or similar platforms:

  1. Locate your agent configuration directory

    • Claude Desktop: ~/.config/claude/agents/ (Linux/Mac) or %APPDATA%\claude\agents\ (Windows)
    • Other platforms: Check platform documentation
  2. Copy the memories folder

    # Linux/Mac
    cp -r memories ~/.config/claude/agents/lineage-extractor/
    
    # Windows
    xcopy /E /I memories %APPDATA%\claude\agents\lineage-extractor\
    
  3. Configure API credentials in your platform's settings

  4. Restart the application

Method 3: Python Integration

To integrate into your own Python application:

  1. Install dependencies

    pip install anthropic python-dotenv
    
  2. Use the integration example

    from anthropic import Anthropic
    from dotenv import load_dotenv
    import os
    
    # Load environment variables
    load_dotenv()
    
    # Initialize client
    client = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
    
    # Load agent configuration
    with open("memories/agent.md", "r") as f:
        system_prompt = f.read()
    
    # Use the agent
    response = client.messages.create(
        model="claude-3-5-sonnet-20241022",
        max_tokens=4000,
        system=system_prompt,
        messages=[{
            "role": "user",
            "content": "Extract lineage from this metadata: ..."
        }]
    )
    
    print(response.content[0].text)
    

Configuration

API Keys Setup

Anthropic API Key

  1. Go to https://console.anthropic.com/
  2. Create an account or sign in
  3. Navigate to API Keys
  4. Create a new key
  5. Copy to .env file

Google Cloud (for BigQuery)

  1. Go to https://console.cloud.google.com/
  2. Create a project or select existing
  3. Enable BigQuery API
  4. Create a service account:
    • Go to IAM & Admin β†’ Service Accounts
    • Create service account
    • Grant "BigQuery Data Viewer" role
    • Create JSON key
  5. Download JSON and reference in .env

Tavily (for web search)

  1. Go to https://tavily.com/
  2. Sign up for an account
  3. Get your API key
  4. Add to .env file

Tool Configuration

Edit memories/tools.json to customize available tools:

{
  "tools": [
    "bigquery_execute_query",      // Query BigQuery
    "read_url_content",             // Fetch from URLs
    "google_sheets_read_range",     // Read Google Sheets
    "tavily_web_search"             // Web search
  ],
  "interrupt_config": {
    "bigquery_execute_query": false,
    "read_url_content": false,
    "google_sheets_read_range": false,
    "tavily_web_search": false
  }
}

Available Tools:

  • bigquery_execute_query: Execute SQL queries on BigQuery
  • read_url_content: Fetch content from URLs/APIs
  • google_sheets_read_range: Read data from Google Sheets
  • tavily_web_search: Perform web searches

Subagent Configuration

Customize subagents by editing their configuration files:

Metadata Parser (memories/subagents/metadata_parser/)

  • agent.md: Instructions for parsing metadata
  • tools.json: Tools available to parser

Graph Visualizer (memories/subagents/graph_visualizer/)

  • agent.md: Instructions for creating visualizations
  • tools.json: Tools available to visualizer

Usage Scenarios

Scenario 1: BigQuery Lineage Extraction

from anthropic import Anthropic
import os

client = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))

with open("memories/agent.md", "r") as f:
    system_prompt = f.read()

response = client.messages.create(
    model="claude-3-5-sonnet-20241022",
    max_tokens=4000,
    system=system_prompt,
    messages=[{
        "role": "user",
        "content": "Extract lineage from BigQuery project: my-project, dataset: analytics"
    }]
)

print(response.content[0].text)

Scenario 2: File-Based Metadata

# Read metadata from file
with open("dbt_manifest.json", "r") as f:
    metadata = f.read()

response = client.messages.create(
    model="claude-3-5-sonnet-20241022",
    max_tokens=4000,
    system=system_prompt,
    messages=[{
        "role": "user",
        "content": f"Extract lineage from this dbt manifest:\n\n{metadata}"
    }]
)

Scenario 3: API Metadata

response = client.messages.create(
    model="claude-3-5-sonnet-20241022",
    max_tokens=4000,
    system=system_prompt,
    messages=[{
        "role": "user",
        "content": "Extract lineage from API: https://api.example.com/metadata"
    }]
)

Advanced Configuration

Custom Visualization Formats

To add custom visualization formats, edit memories/subagents/graph_visualizer/agent.md:

### 4. Custom Format
Generate a custom format with:
- Your specific requirements
- Custom styling rules
- Special formatting needs

Adding New Metadata Sources

To support new metadata sources:

  1. Add tool to memories/tools.json
  2. Update memories/agent.md with source-specific instructions
  3. Update memories/subagents/metadata_parser/agent.md if needed

MCP Integration

To integrate with Model Context Protocol servers:

  1. Check if MCP tools are available: /tools directory
  2. Add MCP tools to memories/tools.json
  3. Configure MCP server connection
  4. See memories/mcp_integration.md (if available)

Troubleshooting

Common Issues

1. Authentication Errors

Problem: API authentication fails Solutions:

  • Verify API key is correct in .env
  • Check key hasn't expired
  • Ensure environment variables are loaded
  • Try regenerating the API key
# Test Anthropic API key
python -c "from anthropic import Anthropic; import os; from dotenv import load_dotenv; load_dotenv(); client = Anthropic(api_key=os.getenv('ANTHROPIC_API_KEY')); print('βœ“ API key works')"

2. BigQuery Access Issues

Problem: Cannot access BigQuery Solutions:

  • Verify service account has BigQuery permissions
  • Check project ID is correct
  • Ensure JSON key file path is correct
  • Test credentials:
# Test BigQuery access
gcloud auth activate-service-account --key-file=/path/to/key.json
bq ls --project_id=your-project-id

3. Import Errors

Problem: ModuleNotFoundError Solutions:

# Install missing packages
pip install anthropic google-cloud-bigquery requests pyyaml python-dotenv

# Or install all at once
pip install -r requirements.txt  # if you create one

4. Environment Variables Not Loading

Problem: .env file not being read Solutions:

# Explicitly load .env
from dotenv import load_dotenv
load_dotenv()

# Or specify path
load_dotenv(".env")

# Verify loading
import os
print(os.getenv("ANTHROPIC_API_KEY"))  # Should not be None

5. File Path Issues

Problem: Cannot find memories/agent.md Solutions:

# Use absolute path
import os
base_dir = os.path.dirname(os.path.abspath(__file__))
agent_path = os.path.join(base_dir, "memories", "agent.md")

# Or change working directory
os.chdir("/path/to/local_clone")

Performance Issues

Slow Response Times

Causes:

  • Large metadata files
  • Complex lineage graphs
  • Network latency

Solutions:

  • Break large metadata into chunks
  • Use filtering to focus on specific entities
  • Increase API timeout settings
  • Cache frequently used results

Debugging Tips

  1. Enable verbose logging

    import logging
    logging.basicConfig(level=logging.DEBUG)
    
  2. Test each component separately

    • Test API connection first
    • Test metadata retrieval
    • Test parsing separately
    • Test visualization separately
  3. Validate metadata format

    • Ensure JSON is valid
    • Check for required fields
    • Verify structure matches expected format
  4. Check agent configuration

    • Verify memories/agent.md is readable
    • Check tools.json syntax
    • Ensure subagent files exist

Getting Help

Documentation

Testing Your Setup

Run this complete test:

from anthropic import Anthropic
from dotenv import load_dotenv
import os

# Load environment
load_dotenv()

# Test 1: API Connection
try:
    client = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
    print("βœ“ Anthropic API connection successful")
except Exception as e:
    print(f"βœ— API connection failed: {e}")
    exit(1)

# Test 2: Load Agent Config
try:
    with open("memories/agent.md", "r") as f:
        system_prompt = f.read()
    print("βœ“ Agent configuration loaded")
except Exception as e:
    print(f"βœ— Failed to load agent config: {e}")
    exit(1)

# Test 3: Simple Query
try:
    response = client.messages.create(
        model="claude-3-5-sonnet-20241022",
        max_tokens=1000,
        system=system_prompt,
        messages=[{
            "role": "user",
            "content": "Hello, what can you help me with?"
        }]
    )
    print("βœ“ Agent response successful")
    print(f"\nAgent says: {response.content[0].text}")
except Exception as e:
    print(f"βœ— Agent query failed: {e}")
    exit(1)

print("\nβœ“ All tests passed! Your setup is ready.")

Save as test_setup.py and run:

python test_setup.py

Next Steps

  1. βœ… Complete setup
  2. βœ… Test with sample metadata
  3. πŸ“Š Extract your first lineage
  4. 🎨 Customize visualization preferences
  5. πŸ”§ Integrate with your workflow

Setup complete? Try the usage examples in README.md or run your own lineage extraction!