Spaces:
Running
Running
File size: 6,816 Bytes
f391dd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import modal
import json
from datasets import Dataset
import time
modal.enable_output()
app = modal.App("fistalfinetuner")
volume = modal.Volume.from_name("fistal-models", create_if_missing=True )
modal_image = (
modal.Image.debian_slim(python_version="3.11")
.apt_install("git")
.pip_install(
"torch>=2.6.0",
"torchvision",
"torchaudio",
extra_index_url="https://download.pytorch.org/whl/cu121",
)
.pip_install(
"transformers",
"datasets",
"accelerate",
"trl",
"bitsandbytes",
"peft",
"unsloth_zoo",
"datasets==4.3.0"
)
.pip_install(
"unsloth @ git+https://github.com/unslothai/unsloth.git"
)
)
@app.function(
image=modal_image,
gpu="T4",
timeout=3600,
volumes={"/models":volume},
retries=modal.Retries(max_retries=0, backoff_coefficient=1.0)
)
def train_with_modal(ft_data: str, model_name: str):
"""
Finetuning model using Modal's GPU
"""
import torch
if not torch.cuda.is_available():
return {"status": "error", "message": "No GPU available!"}
from unsloth import FastLanguageModel, is_bf16_supported
from transformers import TrainingArguments
from trl import SFTTrainer
import os
data = []
for line in ft_data.strip().split('\n'):
if line.strip():
data.append(json.loads(line))
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name,
max_seq_length=512,
load_in_4bit=True,
dtype=None
)
print("Configuring LoRA...")
model = FastLanguageModel.get_peft_model(
model,
r=128,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
lora_alpha=16,
lora_dropout=0,
bias="none",
random_state=2001,
use_gradient_checkpointing="unsloth",
loftq_config=None,
use_rslora=False
)
def format_example(example):
text = tokenizer.apply_chat_template(
example['messages'],
tokenize=False,
add_generation_prompt=False
)
return {"text": text}
dataset = Dataset.from_list(data)
dataset = dataset.map(format_example)
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
dataset_text_field="text",
max_seq_length=2000,
dataset_num_proc=2,
args=TrainingArguments(
per_device_train_batch_size=2,
gradient_accumulation_steps=8,
warmup_steps=5,
num_train_epochs=1,
max_steps=30,
learning_rate=2e-4,
fp16=not is_bf16_supported(),
bf16=is_bf16_supported(),
logging_steps=1,
optim="adamw_8bit",
lr_scheduler_type="linear",
output_dir="/tmp/training_output",
seed=42,
report_to="none",
dataloader_num_workers=0
)
)
print("Training started...")
trainer.train()
print("Training complete!")
timestamp = int(time.time())
volume_path = f"/models/finetuned-{timestamp}"
os.makedirs(volume_path, exist_ok=True)
print(f"Saving to: {volume_path}")
model.save_pretrained_merged(volume_path, tokenizer, save_method="merged_16bit")
print("Model saved!")
model.config.save_pretrained(volume_path)
trainer.save_model(volume_path)
tokenizer.save_pretrained(volume_path)
volume.commit()
print("Volume has been committed!")
del model
del trainer
import gc
gc.collect()
torch.cuda.empty_cache()
return {
"status":"success",
"volume_path":volume_path,
"timestamp": timestamp
}
@app.function(
image=modal_image,
volumes={"/models": volume},
timeout=900,
secrets=[modal.Secret.from_name("huggingface-secret")]
)
def upload_to_hf_from_volume(volume_path: str, timestamp: int, repoName: str):
"""
Upload model directly from Modal Volume to HuggingFace
This runs on Modal's fast network - no download to local machine needed!
"""
from huggingface_hub import HfApi, create_repo
import os
print(f"π€ Uploading from {volume_path} to HuggingFace...")
if not os.path.exists(volume_path):
raise FileNotFoundError(f"Model not found at: {volume_path}")
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
raise ValueError("HF_TOKEN not found in Modal secrets")
hf_api = HfApi()
repo_id = f"mahreenfathima/finetuned-{repoName}-{timestamp}"
print(f"Creating HuggingFace repo: {repo_id}")
create_repo(
repo_id=repo_id,
token=hf_token,
private=False,
exist_ok=True,
repo_type="model"
)
print(f"Uploading files to {repo_id}...")
hf_api.upload_folder(
folder_path=volume_path,
repo_id=repo_id,
token=hf_token,
commit_message=f"Fine-tuned model (timestamp: {timestamp})"
)
model_url = f"https://huggingface.co/{repo_id}"
print(f"β
Successfully uploaded to {model_url}")
return {
"model_url": model_url,
"repo_id": repo_id
}
@app.function(
gpu="T4",
timeout=600,
image=modal_image
)
def evaluate_model(repo_id: str, test_inputs: list[str]):
"""Load model and run inference on test cases"""
from unsloth import FastLanguageModel
from transformers import AutoTokenizer
import torch
print(f"Loading model: {repo_id}")
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=repo_id,
max_seq_length=512,
load_in_4bit=True,
dtype=None,
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
outputs = []
for test_input in test_inputs:
print(f"Processing: {test_input[:50]}...")
inputs = tokenizer(test_input, return_tensors="pt").to(model.device)
with torch.no_grad():
output = model.generate(
**inputs,
max_new_tokens=100,
temperature=0.5,
do_sample=True
)
decoded = tokenizer.decode(output[0], skip_special_tokens=True)
if decoded.startswith(test_input):
decoded = decoded[len(test_input):].strip()
outputs.append(decoded)
return outputs
|