Spaces:
Running
Running
Upload 8 files
Browse files- .gitattributes +1 -0
- .gitignore +20 -0
- app.py +388 -0
- client.py +273 -0
- modal_tool.py +259 -0
- requirements.txt +0 -0
- server.py +515 -0
- static/fullnew.jpg +0 -0
- static/new.jpg +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
static/new.jpg filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python-generated files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[oc]
|
| 4 |
+
build/
|
| 5 |
+
dist/
|
| 6 |
+
wheels/
|
| 7 |
+
*.egg-info
|
| 8 |
+
*llama.cpp/
|
| 9 |
+
|
| 10 |
+
# Virtual environments
|
| 11 |
+
.venv
|
| 12 |
+
|
| 13 |
+
.env
|
| 14 |
+
*.env
|
| 15 |
+
.env.local
|
| 16 |
+
__pycache__/
|
| 17 |
+
*.pyc
|
| 18 |
+
.venv/
|
| 19 |
+
venv/
|
| 20 |
+
.uv/
|
app.py
ADDED
|
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#Ψ¨Ψ³Ω
Ψ§ΩΩΩ Ψ§ΩΨ±ΨΩ
Ω Ψ§ΩΨ±ΨΩΩ
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import asyncio
|
| 4 |
+
import base64
|
| 5 |
+
from client import run_fistal
|
| 6 |
+
import asyncio
|
| 7 |
+
import os
|
| 8 |
+
from dotenv import load_dotenv
|
| 9 |
+
|
| 10 |
+
load_dotenv()
|
| 11 |
+
|
| 12 |
+
REQUIRED_SECRETS = [
|
| 13 |
+
"GOOGLE_API_KEY_1",
|
| 14 |
+
"GOOGLE_API_KEY_2",
|
| 15 |
+
"GOOGLE_API_KEY_3",
|
| 16 |
+
"GROQ_API_KEY",
|
| 17 |
+
"GEMINI_API_KEY",
|
| 18 |
+
"HUGGINGFACE_API_KEY",
|
| 19 |
+
"MODAL_TOKEN_ID",
|
| 20 |
+
"MODAL_TOKEN_SECRET"
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
missing = [s for s in REQUIRED_SECRETS if not os.getenv(s)]
|
| 24 |
+
if missing:
|
| 25 |
+
raise ValueError(f"Missing secrets in HF Space: {', '.join(missing)}\nAdd them in Settings β Variables and secrets")
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def image_to_base64(filepath):
|
| 30 |
+
try:
|
| 31 |
+
with open(filepath, "rb") as image_file:
|
| 32 |
+
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
|
| 33 |
+
mime_type = "image/jpeg" if filepath.lower().endswith((".jpg", ".jpeg")) else "image/png"
|
| 34 |
+
return f"data:{mime_type};base64,{encoded_string}"
|
| 35 |
+
except FileNotFoundError:
|
| 36 |
+
print(f"Error: Image file not found at {filepath}")
|
| 37 |
+
return ""
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
image_data_url = image_to_base64("static/new.jpg")
|
| 41 |
+
full_img = image_to_base64("static/fullnew.jpg")
|
| 42 |
+
|
| 43 |
+
def app():
|
| 44 |
+
css = f"""
|
| 45 |
+
/* Global App Styling */
|
| 46 |
+
.gradio-container {{
|
| 47 |
+
background: url('{full_img}') !important;
|
| 48 |
+
background-size: cover !important;
|
| 49 |
+
box-shadow: linear-gradient(to right, #008DDA, #6A1AAB, #C71585, #F56C40) !important;!important;
|
| 50 |
+
outline: linear-gradient(to right, #008DDA, #6A1AAB, #C71585, #F56C40) !important; !important;
|
| 51 |
+
}}
|
| 52 |
+
.gradio-container .block {{
|
| 53 |
+
background-color: #27272a !important;
|
| 54 |
+
}}
|
| 55 |
+
.gradio-container .wrap {{
|
| 56 |
+
background-color: linear-gradient(to right, #008DDA, #6A1AAB, #C71585, #F56C40) !important;
|
| 57 |
+
border: linear-gradient(to right, #008DDA, #6A1AAB, #C71585, #F56C40) !important;
|
| 58 |
+
border-width: 1px !important;
|
| 59 |
+
|
| 60 |
+
}}
|
| 61 |
+
.gradio-container .block,
|
| 62 |
+
.gradio-container .wrap {{
|
| 63 |
+
border: none !important;
|
| 64 |
+
box-shadow: none !important; /* removes shadow */
|
| 65 |
+
outline: none !important; /* removes focus outline */
|
| 66 |
+
}}
|
| 67 |
+
|
| 68 |
+
#tuner {{
|
| 69 |
+
background: linear-gradient(to right, #008DDA, #6A1AAB, #C71585, #F56C40) !important;
|
| 70 |
+
padding: 10px;
|
| 71 |
+
border-radius: 8px;
|
| 72 |
+
}}
|
| 73 |
+
#tuner .wrap {{
|
| 74 |
+
background-color: #5f5f5f !important;
|
| 75 |
+
}}
|
| 76 |
+
.laun {{
|
| 77 |
+
background: linear-gradient(to right, #008DDA, #6A1AAB, #C71585, #F56C40) !important;
|
| 78 |
+
padding: 10px;
|
| 79 |
+
border-radius: 8px;
|
| 80 |
+
color: white;
|
| 81 |
+
}}
|
| 82 |
+
|
| 83 |
+
.mark {{
|
| 84 |
+
background-color: #27272a !important;
|
| 85 |
+
padding: 6px;
|
| 86 |
+
}}
|
| 87 |
+
.me {{
|
| 88 |
+
background-color: #27272a !important;
|
| 89 |
+
color: white !important;
|
| 90 |
+
border: none !important;
|
| 91 |
+
}}
|
| 92 |
+
.me textarea {{
|
| 93 |
+
background-color: #5f5f5f !important;
|
| 94 |
+
color: white !important;
|
| 95 |
+
}}
|
| 96 |
+
.label, .form > div > label, .block > label {{
|
| 97 |
+
color: white !important;
|
| 98 |
+
}}
|
| 99 |
+
.drop {{
|
| 100 |
+
background-color: #27272a !important;
|
| 101 |
+
color: white !important;
|
| 102 |
+
}}
|
| 103 |
+
|
| 104 |
+
.drop li {{
|
| 105 |
+
background-color: #27272a !important;
|
| 106 |
+
color: white !important;
|
| 107 |
+
}}
|
| 108 |
+
.drop input {{
|
| 109 |
+
background-color: #5f5f5f !important;
|
| 110 |
+
background-size: cover !important;
|
| 111 |
+
color: white !important;
|
| 112 |
+
border: none !important;
|
| 113 |
+
padding: 6px 10px !important;
|
| 114 |
+
border-radius: 4px !important;
|
| 115 |
+
}}
|
| 116 |
+
.drop .wrap {{
|
| 117 |
+
background-color: #5f5f5f !important;
|
| 118 |
+
border-radius: 4px !important;
|
| 119 |
+
}}
|
| 120 |
+
|
| 121 |
+
.out {{
|
| 122 |
+
padding: 10px !important;
|
| 123 |
+
font-size: 25px !important;
|
| 124 |
+
/*margin-left: 10px !important;*/
|
| 125 |
+
|
| 126 |
+
}}
|
| 127 |
+
|
| 128 |
+
.login-container .wrap {{
|
| 129 |
+
background-color: green !important;
|
| 130 |
+
border-radius: 20px !important;
|
| 131 |
+
}}
|
| 132 |
+
.login-container {{
|
| 133 |
+
background-color: #5f5f5f !important;
|
| 134 |
+
display: flex;
|
| 135 |
+
height: 85vh;
|
| 136 |
+
width: 100%;
|
| 137 |
+
margin: 0;
|
| 138 |
+
padding: 0;
|
| 139 |
+
}}
|
| 140 |
+
.left-side {{
|
| 141 |
+
flex: 1;
|
| 142 |
+
background: linear-gradient(rgba(0, 0, 0, 0.4), rgba(0, 0, 0, 0.4)),
|
| 143 |
+
url('{image_to_base64("static/new.jpg")}') center/cover;
|
| 144 |
+
display: flex;
|
| 145 |
+
flex-direction: column;
|
| 146 |
+
justify-content: center;
|
| 147 |
+
align-items: center;
|
| 148 |
+
color: white;
|
| 149 |
+
padding: 60px;
|
| 150 |
+
}}
|
| 151 |
+
.left-side h1 {{
|
| 152 |
+
font-size: 3.2rem;
|
| 153 |
+
font-weight: 700;
|
| 154 |
+
margin-bottom: 20px;
|
| 155 |
+
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.5);
|
| 156 |
+
}}
|
| 157 |
+
.left-side p {{
|
| 158 |
+
font-size: 1.5rem;
|
| 159 |
+
font-weight: 300;
|
| 160 |
+
text-align: center;
|
| 161 |
+
max-width: 500px;
|
| 162 |
+
text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.5);
|
| 163 |
+
}}
|
| 164 |
+
.right-side {{
|
| 165 |
+
flex: 1;
|
| 166 |
+
display: flex;
|
| 167 |
+
flex-direction: column;
|
| 168 |
+
justify-content: center;
|
| 169 |
+
align-items: center;
|
| 170 |
+
background-image: linear-gradient(to bottom, #000000, #050505, #0b0b0b, #0f0f0f, #131313);
|
| 171 |
+
padding: 60px;
|
| 172 |
+
}}
|
| 173 |
+
.login-box {{
|
| 174 |
+
background: rgba(255, 255, 255, 0.15);
|
| 175 |
+
backdrop-filter: blur(10px);
|
| 176 |
+
border-radius: 20px;
|
| 177 |
+
padding: 50px 40px;
|
| 178 |
+
width: 100%;
|
| 179 |
+
max-width: 400px;
|
| 180 |
+
box-shadow: 0 20px 60px rgba(0, 0, 0, 0.3);
|
| 181 |
+
color: white;
|
| 182 |
+
}}
|
| 183 |
+
.login-box h2 {{
|
| 184 |
+
font-size: 2rem;
|
| 185 |
+
margin-bottom: 30px;
|
| 186 |
+
text-align: center;
|
| 187 |
+
margin-left: -50px;
|
| 188 |
+
}}
|
| 189 |
+
#launch_button {{
|
| 190 |
+
width: 100% !important;
|
| 191 |
+
}}
|
| 192 |
+
:root, .gradio-container * {{
|
| 193 |
+
--block-background-fill: #27272a !important;
|
| 194 |
+
--panel-background-fill: linear-gradient(to right, #008DDA, #6A1AAB, #C71585, #F56C40) !important;
|
| 195 |
+
--input-background-fill: #5f5f5f !important;
|
| 196 |
+
--color-background-primary: #27272a !important;
|
| 197 |
+
--block-border-width: 1px !important;
|
| 198 |
+
--block-border-color: linear-gradient(to right, #008DDA, #6A1AAB, #C71585, #F56C40) !important;
|
| 199 |
+
--panel-border-width: 1px !important;
|
| 200 |
+
--panel-border-color: linear-gradient(to right, #008DDA, #6A1AAB, #C71585, #F56C40) !important;
|
| 201 |
+
--neutral-50: #27272a !important;
|
| 202 |
+
}}
|
| 203 |
+
@media (max-width: 768px) {{
|
| 204 |
+
.login-container {{
|
| 205 |
+
flex-direction: column;
|
| 206 |
+
}}
|
| 207 |
+
.left-side {{
|
| 208 |
+
min-height: 40vh;
|
| 209 |
+
}}
|
| 210 |
+
.left-side h1 {{
|
| 211 |
+
font-size: 2.5rem;
|
| 212 |
+
}}
|
| 213 |
+
}}
|
| 214 |
+
"""
|
| 215 |
+
|
| 216 |
+
with gr.Blocks(title="Fistal AI π", css=css, theme=gr.themes.Ocean()) as demo:
|
| 217 |
+
|
| 218 |
+
with gr.Group(visible=True) as login_block:
|
| 219 |
+
gr.HTML(f"""
|
| 220 |
+
<div class="login-container">
|
| 221 |
+
<div class="left-side">
|
| 222 |
+
<h1 style="color: white !important;">Fistal AI</h1>
|
| 223 |
+
<p style="color: white !important;">Finetune LLM's with ease</p>
|
| 224 |
+
</div>
|
| 225 |
+
<div class="right-side">
|
| 226 |
+
<div class="login-box">
|
| 227 |
+
<h2 style="color: white !important;">β¨ Features</h2>
|
| 228 |
+
<div style="text-align: left; color: #fff; line-height: 1.8;">
|
| 229 |
+
<div style="margin-bottom: 20px;">
|
| 230 |
+
<strong style="color: #667eea;">π€ Agentic AI</strong><br>
|
| 231 |
+
<span style="font-size: 0.9rem;color: white !important;">LangGraph-powered automation via Fistal MCP</span>
|
| 232 |
+
</div>
|
| 233 |
+
<div style="margin-bottom: 20px;">
|
| 234 |
+
<strong style="color: #667eea;">β‘ Modal GPU</strong><br>
|
| 235 |
+
<span style="font-size: 0.9rem;color: white !important;">Serverless T4 training, no setup needed</span>
|
| 236 |
+
</div>
|
| 237 |
+
<div style="margin-bottom: 20px;">
|
| 238 |
+
<strong style="color: #667eea;">π¦₯ Unsloth</strong><br>
|
| 239 |
+
<span style="font-size: 0.9rem;color: white !important;">2x faster, 70% less memory</span>
|
| 240 |
+
</div>
|
| 241 |
+
<div style="margin-bottom: 25px;">
|
| 242 |
+
<strong style="color: #667eea;">π Auto Evaluation</strong><br>
|
| 243 |
+
<span style="font-size: 0.9rem;color: white !important;">LLM-as-a-judge with BLEU, ROUGE metrics assessment</span>
|
| 244 |
+
</div>
|
| 245 |
+
</div>
|
| 246 |
+
</div>
|
| 247 |
+
</div>
|
| 248 |
+
</div>
|
| 249 |
+
""")
|
| 250 |
+
|
| 251 |
+
launch_btn = gr.Button(
|
| 252 |
+
value="π Launch Fistal",
|
| 253 |
+
elem_id="launch_fistal_btn",
|
| 254 |
+
elem_classes="laun"
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
# ---------------- MAIN APP BLOCK ----------------
|
| 258 |
+
with gr.Group(visible=False) as main_block:
|
| 259 |
+
gr.HTML(f"""
|
| 260 |
+
<div class="start" style="
|
| 261 |
+
background: url('{image_data_url}');
|
| 262 |
+
background-size: cover;
|
| 263 |
+
background-position: center;
|
| 264 |
+
background-repeat: no-repeat;
|
| 265 |
+
padding: 20px;
|
| 266 |
+
margin-top:10px;
|
| 267 |
+
margin-bottom: 10px;
|
| 268 |
+
border-radius: 10px;">
|
| 269 |
+
<h1 style="color: white; font-size: 35px;">Fistal AI π</h1>
|
| 270 |
+
<p style="color: white; margin-top: -5px;">Seamlessly fine-tune LLMs with an Agentic AI powered by MCP, Modal, and Unsloth.</p>
|
| 271 |
+
<div style="display:flex; gap:5px; flex-wrap:wrap; align-items:center; margin-bottom:15px;">
|
| 272 |
+
<a href="https://huggingface.co/spaces/your-username/fistal-ai">
|
| 273 |
+
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20-%20HF%20Space%20-%20orange" alt="HF Space">
|
| 274 |
+
</a>
|
| 275 |
+
<img src="https://img.shields.io/badge/Python-3.11-blue?logo=python" alt="Python">
|
| 276 |
+
<img src="https://img.shields.io/badge/Modal-Enabled-green" alt="Modal">
|
| 277 |
+
<img src="https://img.shields.io/badge/Unsloth-4bit-purple" alt="Unsloth">
|
| 278 |
+
<img src="https://img.shields.io/badge/MCP-Enabled-pink" alt="MCP">
|
| 279 |
+
<img src="https://img.shields.io/badge/%F0%9F%94%B6%20-%20Gradio%20-%20%23fc7280" alt="Gradio">
|
| 280 |
+
<img src="https://img.shields.io/badge/%F0%9F%A4%96%20-%20Agentic%20AI%20-%20%23472731" alt="Agentic AI">
|
| 281 |
+
<img src="https://img.shields.io/badge/%F0%9F%A7%AE%20-%201B%2F2B%2F3B%20models%20-%20teal" alt="1B-3B Models">
|
| 282 |
+
<img src="https://img.shields.io/badge/%F0%9F%93%9D%20-%20Evaluation%20Report%20-%20purple" alt="Evaluation Report">
|
| 283 |
+
</div>
|
| 284 |
+
</div>
|
| 285 |
+
""")
|
| 286 |
+
|
| 287 |
+
with gr.Group(elem_classes="me"):
|
| 288 |
+
with gr.Row():
|
| 289 |
+
topic = gr.Textbox(label="π Dataset topic", placeholder="Python Questions, Return policy FAQS...", elem_classes="me")
|
| 290 |
+
samples = gr.Slider(label="π Number of samples", minimum=0, maximum=2000, interactive=True, step=5, value=1000, elem_classes="me")
|
| 291 |
+
task_type = gr.Dropdown(label="π― Task Type", choices=["text-generation","summarization","classification","question-answering"], interactive=True, elem_classes="drop")
|
| 292 |
+
model_name = gr.Dropdown(
|
| 293 |
+
label="π€ Model to Fine-tune",
|
| 294 |
+
choices=[
|
| 295 |
+
"unsloth/Llama-3.2-1B-Instruct-bnb-4bit",
|
| 296 |
+
"unsloth/Phi-3-mini-4k-instruct",
|
| 297 |
+
"unsloth/Phi-3-medium-4k-instruct",
|
| 298 |
+
"unsloth/Llama-3.2-3B-Instruct-bnb-4bit",
|
| 299 |
+
"unsloth/Qwen2.5-3B-Instruct-bnb-4bit",
|
| 300 |
+
"unsloth/Qwen2.5-1.5B-Instruct-bnb-4bit",
|
| 301 |
+
"unsloth/Qwen2.5-0.5B-Instruct-bnb-4bit",
|
| 302 |
+
"unsloth/Qwen2.5-Coder-3B-Instruct-bnb-4bit",
|
| 303 |
+
"unsloth/gemma-2-2b-it-bnb-4bit",
|
| 304 |
+
"unsloth/SmolLM2-1.7B-Instruct-bnb-4bit",
|
| 305 |
+
"unsloth/Phi-3.5-mini-instruct-bnb-4bit",
|
| 306 |
+
"unsloth/Granite-3.0-2b-instruct-bnb-4bit",
|
| 307 |
+
"unsloth/granite-4.0-h-1b-bnb-4bit"
|
| 308 |
+
], interactive=True, elem_classes="drop"
|
| 309 |
+
)
|
| 310 |
+
tuner = gr.Button("π Start Finetuning", size="lg", elem_id="tuner")
|
| 311 |
+
gr.Markdown("""## <span style="color: white;">π Agent Activity Flow</span>""", elem_classes="mark")
|
| 312 |
+
status = gr.Textbox(label="Status", value="Ready to start...", interactive=False)
|
| 313 |
+
output = gr.Markdown(label="Output Log:", value="", elem_classes="out")
|
| 314 |
+
model_link = gr.Button(
|
| 315 |
+
value="π€ View Model on Hugging Face",
|
| 316 |
+
visible=False,
|
| 317 |
+
elem_classes="out"
|
| 318 |
+
)
|
| 319 |
+
async def run_workflow(dataset_topic, samples, model, task, request = gr.Request):
|
| 320 |
+
output_log = "## Under the Hood" + "\n\n"
|
| 321 |
+
output_log += "π **Configuration:**\n\n"
|
| 322 |
+
output_log += f" β’ Topic: {dataset_topic}\n\n"
|
| 323 |
+
output_log += f" β’ Samples: {samples}\n\n"
|
| 324 |
+
output_log += f" β’ Model: {model}\n\n"
|
| 325 |
+
output_log += f" β’ Task: {task}\n\n"
|
| 326 |
+
|
| 327 |
+
yield (" Starting workflow...", output_log, "")
|
| 328 |
+
|
| 329 |
+
try:
|
| 330 |
+
in_eval_report = False
|
| 331 |
+
eval_report_buffer = ""
|
| 332 |
+
|
| 333 |
+
async for chunk in run_fistal(
|
| 334 |
+
dataset_topic=dataset_topic,
|
| 335 |
+
num_samples=samples,
|
| 336 |
+
model_name=model,
|
| 337 |
+
task_type=task
|
| 338 |
+
):
|
| 339 |
+
if "evaluating" in str(chunk).lower() or "llm_as_judge" in str(chunk).lower():
|
| 340 |
+
in_eval_report = True
|
| 341 |
+
|
| 342 |
+
if in_eval_report:
|
| 343 |
+
eval_report_buffer += str(chunk)
|
| 344 |
+
else:
|
| 345 |
+
output_log += str(chunk)
|
| 346 |
+
|
| 347 |
+
import re
|
| 348 |
+
urls = re.findall(r'https://huggingface\.co/[^\s\)]+', output_log + eval_report_buffer)
|
| 349 |
+
model_url = urls[0] if urls else ""
|
| 350 |
+
model_url = model_url.rstrip('.')
|
| 351 |
+
model_url = re.sub(r'[^a-zA-Z0-9:/._-].*$', '', model_url)
|
| 352 |
+
|
| 353 |
+
yield ("π‘ Processing...", output_log + eval_report_buffer, model_url)
|
| 354 |
+
await asyncio.sleep(0.1)
|
| 355 |
+
|
| 356 |
+
# Final output
|
| 357 |
+
final_output = output_log
|
| 358 |
+
if eval_report_buffer:
|
| 359 |
+
final_output += "π **EVALUATION REPORT**\n\n"
|
| 360 |
+
final_output += eval_report_buffer
|
| 361 |
+
|
| 362 |
+
final_output += "\n\n⨠**Fistal AI has completed the process!**"
|
| 363 |
+
yield ("π’ Complete!", final_output, gr.Button(
|
| 364 |
+
value="π€ View Model on Hugging Face",
|
| 365 |
+
visible=True,
|
| 366 |
+
interactive=True,
|
| 367 |
+
link=model_url
|
| 368 |
+
))
|
| 369 |
+
|
| 370 |
+
except Exception as e:
|
| 371 |
+
import traceback
|
| 372 |
+
error_log = output_log + f"\n\nβ **ERROR:**\n```\n{str(e)}\n{traceback.format_exc()}\n```"
|
| 373 |
+
yield ("π΄ Error", error_log, "")
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
tuner.click(run_workflow, [topic, samples, model_name, task_type], [status, output, model_link])
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
launch_btn.click(
|
| 380 |
+
lambda: (gr.update(visible=False), gr.update(visible=True)),
|
| 381 |
+
None,
|
| 382 |
+
[login_block, main_block]
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
return demo
|
| 386 |
+
|
| 387 |
+
if __name__ == "__main__":
|
| 388 |
+
app().launch()
|
client.py
ADDED
|
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langgraph.graph import StateGraph, START
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 4 |
+
from typing import TypedDict, Annotated
|
| 5 |
+
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage
|
| 6 |
+
from langgraph.graph.message import add_messages
|
| 7 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
| 8 |
+
import asyncio
|
| 9 |
+
from langchain_mcp_adapters.client import MultiServerMCPClient
|
| 10 |
+
import os
|
| 11 |
+
from typing import Optional
|
| 12 |
+
import sys
|
| 13 |
+
|
| 14 |
+
load_dotenv()
|
| 15 |
+
|
| 16 |
+
api_key = os.getenv("GEMINI_API_KEY")
|
| 17 |
+
|
| 18 |
+
llm = ChatGoogleGenerativeAI(
|
| 19 |
+
model="gemini-2.5-flash",
|
| 20 |
+
temperature=0.2,
|
| 21 |
+
google_api_key=api_key
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
client = MultiServerMCPClient(
|
| 25 |
+
{
|
| 26 |
+
"FistalMCP": {
|
| 27 |
+
"transport": "stdio",
|
| 28 |
+
"command": sys.executable,
|
| 29 |
+
"args": ["-u", os.path.join(os.path.dirname(__file__), "server.py")]
|
| 30 |
+
}
|
| 31 |
+
}
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
if client:
|
| 35 |
+
print("β Client initialized!")
|
| 36 |
+
else:
|
| 37 |
+
print("β Failed to initialize MCP Client")
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class ChatState(TypedDict):
|
| 41 |
+
messages: Annotated[list[BaseMessage], add_messages]
|
| 42 |
+
dataset_topic: str
|
| 43 |
+
num_samples: int
|
| 44 |
+
model_name: str
|
| 45 |
+
task_type: str
|
| 46 |
+
dataset_path: Optional[str]
|
| 47 |
+
converted_path: Optional[str]
|
| 48 |
+
model_path: Optional[str]
|
| 49 |
+
hf_url: Optional[str]
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
async def my_graph():
|
| 53 |
+
"""Agent graph that handles mcp tools"""
|
| 54 |
+
tools = await client.get_tools()
|
| 55 |
+
|
| 56 |
+
available_tools = []
|
| 57 |
+
tool_order = ["generate_json_data", "format_json", "finetune_model", "llm_as_judge"]
|
| 58 |
+
available_tools = []
|
| 59 |
+
for tool_name in tool_order:
|
| 60 |
+
for tool in tools:
|
| 61 |
+
if tool.name == tool_name:
|
| 62 |
+
available_tools.append(tool)
|
| 63 |
+
break
|
| 64 |
+
|
| 65 |
+
llm_toolkit = llm.bind_tools(available_tools)
|
| 66 |
+
|
| 67 |
+
async def chat_node(state: ChatState):
|
| 68 |
+
messages = state["messages"]
|
| 69 |
+
dataset_topic = state['dataset_topic']
|
| 70 |
+
if isinstance(dataset_topic, list):
|
| 71 |
+
dataset_topic = dataset_topic[0] if dataset_topic else "unknown"
|
| 72 |
+
|
| 73 |
+
num_samples = state['num_samples']
|
| 74 |
+
if isinstance(num_samples, list):
|
| 75 |
+
num_samples = num_samples[0] if num_samples else 100
|
| 76 |
+
|
| 77 |
+
model_name = state['model_name']
|
| 78 |
+
if isinstance(model_name, list):
|
| 79 |
+
model_name = model_name[0] if model_name else "unknown"
|
| 80 |
+
|
| 81 |
+
task_type = state['task_type']
|
| 82 |
+
if isinstance(task_type, list):
|
| 83 |
+
task_type = task_type[0] if task_type else "text-generation"
|
| 84 |
+
|
| 85 |
+
system_msg = f"""You are Fistal, an AI fine-tuning assistant.
|
| 86 |
+
|
| 87 |
+
**User's Configuration:**
|
| 88 |
+
- Dataset Topic: {dataset_topic}
|
| 89 |
+
- Number of Samples: {num_samples}
|
| 90 |
+
- Model to Fine-tune: {model_name}
|
| 91 |
+
- Task Type: {task_type}
|
| 92 |
+
- Evaluation : Using LLM
|
| 93 |
+
|
| 94 |
+
**Your Workflow:**
|
| 95 |
+
1. Use generate_json_data with topic="{dataset_topic}", task_type="{task_type}", num_samples={num_samples}
|
| 96 |
+
- This returns a dictionary with a "data" field containing the raw dataset
|
| 97 |
+
|
| 98 |
+
2. Use format_json with the "data" field from step 1
|
| 99 |
+
- Pass: raw_data=<the data list from step 1>
|
| 100 |
+
- This returns a dictionary with a "data" field containing formatted data
|
| 101 |
+
|
| 102 |
+
3. Use finetune_model with the "data" field from step 2 and model_name="{model_name}"
|
| 103 |
+
- Pass: formatted_data=<the data list from step 2>, model_name="{model_name}"
|
| 104 |
+
- This returns the Hugging Face repo URL
|
| 105 |
+
|
| 106 |
+
4. Use llm_as_judge with the repo_id from step 3
|
| 107 |
+
- Pass: repo_id=<the HF repo from step 3>, topic="{dataset_topic}", task_type="{task_type}"
|
| 108 |
+
|
| 109 |
+
**FINAL STEP - CRITICAL:**
|
| 110 |
+
5. After completing all tools, you MUST return:
|
| 111 |
+
- The Hugging Face model URL from step 3
|
| 112 |
+
- The evaluation report from step 4
|
| 113 |
+
- Format your final response as:
|
| 114 |
+
|
| 115 |
+
π **Fine-tuning Complete!**
|
| 116 |
+
|
| 117 |
+
**π€ Model Repository:** [HF Repo Link] \n\n
|
| 118 |
+
**π Evaluation Report:** [Full report from llm_as_judge]
|
| 119 |
+
|
| 120 |
+
**IMPORTANT:**
|
| 121 |
+
- Tools pass DATA directly, not file paths
|
| 122 |
+
- Always mention the tool you are going to use first and then proceed with the tool action
|
| 123 |
+
- Extract the "data" field from each tool's response and pass it to the next tool
|
| 124 |
+
- After llm_as_judge completes, return both the HF URL and evaluation report
|
| 125 |
+
- Keep the user informed of progress at each step
|
| 126 |
+
- If a step takes time, do not stay idle. Inform users about short interesting facts
|
| 127 |
+
- Report any errors clearly
|
| 128 |
+
- Do not mention internal data structures or file paths"""
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
full_messages = [SystemMessage(content=system_msg)] + messages
|
| 132 |
+
response = await llm_toolkit.ainvoke(full_messages)
|
| 133 |
+
return {'messages': [response]}
|
| 134 |
+
|
| 135 |
+
tool_node = ToolNode(available_tools)
|
| 136 |
+
|
| 137 |
+
graph = StateGraph(ChatState)
|
| 138 |
+
|
| 139 |
+
graph.add_node("chat_node", chat_node)
|
| 140 |
+
graph.add_node("tools", tool_node)
|
| 141 |
+
|
| 142 |
+
graph.add_edge(START, "chat_node")
|
| 143 |
+
graph.add_conditional_edges("chat_node", tools_condition)
|
| 144 |
+
graph.add_edge("tools", "chat_node")
|
| 145 |
+
|
| 146 |
+
chat = graph.compile()
|
| 147 |
+
|
| 148 |
+
return chat
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
async def run_fistal(
|
| 154 |
+
dataset_topic: str,
|
| 155 |
+
num_samples: int,
|
| 156 |
+
model_name: str,
|
| 157 |
+
task_type: str
|
| 158 |
+
):
|
| 159 |
+
chatbot = await my_graph()
|
| 160 |
+
user_message = f"""Execute the complete fine-tuning workflow:
|
| 161 |
+
- Generate {num_samples} training examples about {dataset_topic}
|
| 162 |
+
- Fine-tune {model_name}
|
| 163 |
+
- Evaluate for {task_type} task
|
| 164 |
+
|
| 165 |
+
Start now!"""
|
| 166 |
+
initial_state = {
|
| 167 |
+
"messages": [HumanMessage(content=user_message)],
|
| 168 |
+
"dataset_topic": dataset_topic,
|
| 169 |
+
"num_samples": num_samples,
|
| 170 |
+
"model_name": model_name,
|
| 171 |
+
"task_type": task_type,
|
| 172 |
+
"dataset_path": None,
|
| 173 |
+
"converted_path": None,
|
| 174 |
+
"model_path": None,
|
| 175 |
+
"hf_url": None
|
| 176 |
+
}
|
| 177 |
+
facts = {
|
| 178 |
+
"generate_json_data": [
|
| 179 |
+
"π‘ Using parallel batch generation with multiple API keys for 3x speed!",
|
| 180 |
+
"π Quality over quantity - diverse examples lead to better models!",
|
| 181 |
+
"π― Generating diverse prompt-response pairs...",
|
| 182 |
+
],
|
| 183 |
+
"format_json": [
|
| 184 |
+
"π Converting to chat format optimized for instruction tuning...",
|
| 185 |
+
"π¬ Proper formatting helps models understand conversation structure!",
|
| 186 |
+
"π¨ Applying ChatML format for consistency...",
|
| 187 |
+
"β
Validating JSON structure for training compatibility...",
|
| 188 |
+
"π§ Optimizing token distribution across examples..."
|
| 189 |
+
],
|
| 190 |
+
"finetune_model": [
|
| 191 |
+
"ποΈ Training on Modal's serverless T4 GPU...",
|
| 192 |
+
"π‘ Using 4-bit quantization to fit in 16GB VRAM!",
|
| 193 |
+
"π¦₯ Unsloth makes training 2x faster with 70% less memory!",
|
| 194 |
+
"β‘ LoRA fine-tuning updates only 0.1% of model parameters!",
|
| 195 |
+
"π― Typical training time: 10-20 minutes for 500 samples...",
|
| 196 |
+
"π₯ Your model is learning patterns from authentic data!",
|
| 197 |
+
"βοΈ Uploading to HuggingFace - your model will be public soon!"
|
| 198 |
+
],
|
| 199 |
+
"llm_as_judge": [
|
| 200 |
+
"π Generating evaluation test cases...",
|
| 201 |
+
"π€ LLM-as-judge provides qualitative insights!",
|
| 202 |
+
"β¨ Testing model coherence, relevance, and accuracy...",
|
| 203 |
+
"π Creating comprehensive evaluation report...",
|
| 204 |
+
"π Analyzing response quality and task alignment...",
|
| 205 |
+
"π Creating comprehensive evaluation report...",
|
| 206 |
+
"π Comparing outputs against expected responses...",
|
| 207 |
+
"π― Assessing model's understanding of the domain...",
|
| 208 |
+
"β
Finalizing evaluation metrics.."
|
| 209 |
+
]
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
current_tool = None
|
| 213 |
+
fact_i = 0
|
| 214 |
+
|
| 215 |
+
async for event in chatbot.astream(initial_state):
|
| 216 |
+
if "tools" in event:
|
| 217 |
+
messages = event["tools"].get("messages", [])
|
| 218 |
+
for msg in messages:
|
| 219 |
+
if hasattr(msg,"name"):
|
| 220 |
+
tool_name = msg.name
|
| 221 |
+
current_tool = tool_name
|
| 222 |
+
fact_i = 0
|
| 223 |
+
yield f"\n{'-'*60}\n"
|
| 224 |
+
yield f"π **Using: {tool_name}**\n\n"
|
| 225 |
+
if tool_name in facts:
|
| 226 |
+
yield f"{facts[tool_name][0]}\n"
|
| 227 |
+
await asyncio.sleep(0.3)
|
| 228 |
+
|
| 229 |
+
if "chat_node" in event:
|
| 230 |
+
messages = event["chat_node"].get("messages", [])
|
| 231 |
+
for msg in messages:
|
| 232 |
+
if hasattr(msg, 'content') and msg.content:
|
| 233 |
+
raw_content = msg.content
|
| 234 |
+
content = ""
|
| 235 |
+
|
| 236 |
+
if isinstance(raw_content, list):
|
| 237 |
+
for item in raw_content:
|
| 238 |
+
if isinstance(item, dict) and item.get('type') == 'text':
|
| 239 |
+
content += item.get('text', '')
|
| 240 |
+
content = content.strip()
|
| 241 |
+
elif isinstance(raw_content, str):
|
| 242 |
+
content = raw_content
|
| 243 |
+
else:
|
| 244 |
+
content = str(raw_content)
|
| 245 |
+
|
| 246 |
+
if content and len(content) > 20 and "tool_calls" not in content.lower():
|
| 247 |
+
yield f"\nπ€ **Fistal:** {content}\n"
|
| 248 |
+
|
| 249 |
+
if current_tool and current_tool in facts:
|
| 250 |
+
fact_i += 1
|
| 251 |
+
if fact_i < len(facts[current_tool]):
|
| 252 |
+
yield f"\nπ‘ {facts[current_tool][fact_i]}\n"
|
| 253 |
+
await asyncio.sleep(0.3)
|
| 254 |
+
yield "β
**Successfully finetuned!**\n"
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
async def main():
|
| 259 |
+
"""Test the agent. Only for running client.py"""
|
| 260 |
+
print("Testing Fistal Agent\n")
|
| 261 |
+
|
| 262 |
+
result = await run_fistal(
|
| 263 |
+
"python programming",
|
| 264 |
+
5,
|
| 265 |
+
"unsloth/Llama-3.2-1B-Instruct-bnb-4bit",
|
| 266 |
+
"text-generation"
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
print(f"\nAgent Response:\n{result}")
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
if __name__ == '__main__':
|
| 273 |
+
asyncio.run(main())
|
modal_tool.py
ADDED
|
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import modal
|
| 2 |
+
import json
|
| 3 |
+
from datasets import Dataset
|
| 4 |
+
import time
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
modal.enable_output()
|
| 8 |
+
|
| 9 |
+
app = modal.App("fistalfinetuner")
|
| 10 |
+
|
| 11 |
+
volume = modal.Volume.from_name("fistal-models", create_if_missing=True )
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
modal_image = (
|
| 18 |
+
modal.Image.debian_slim(python_version="3.11")
|
| 19 |
+
.apt_install("git")
|
| 20 |
+
.pip_install(
|
| 21 |
+
"torch>=2.6.0",
|
| 22 |
+
"torchvision",
|
| 23 |
+
"torchaudio",
|
| 24 |
+
extra_index_url="https://download.pytorch.org/whl/cu121",
|
| 25 |
+
|
| 26 |
+
)
|
| 27 |
+
.pip_install(
|
| 28 |
+
"transformers",
|
| 29 |
+
"datasets",
|
| 30 |
+
"accelerate",
|
| 31 |
+
"trl",
|
| 32 |
+
"bitsandbytes",
|
| 33 |
+
"peft",
|
| 34 |
+
"unsloth_zoo",
|
| 35 |
+
"datasets==4.3.0"
|
| 36 |
+
)
|
| 37 |
+
.pip_install(
|
| 38 |
+
"unsloth @ git+https://github.com/unslothai/unsloth.git"
|
| 39 |
+
)
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
@app.function(
|
| 43 |
+
image=modal_image,
|
| 44 |
+
gpu="T4",
|
| 45 |
+
timeout=3600,
|
| 46 |
+
volumes={"/models":volume},
|
| 47 |
+
retries=modal.Retries(max_retries=0, backoff_coefficient=1.0)
|
| 48 |
+
)
|
| 49 |
+
def train_with_modal(ft_data: str, model_name: str):
|
| 50 |
+
"""
|
| 51 |
+
Finetuning model using Modal's GPU
|
| 52 |
+
"""
|
| 53 |
+
import torch
|
| 54 |
+
|
| 55 |
+
if not torch.cuda.is_available():
|
| 56 |
+
return {"status": "error", "message": "No GPU available!"}
|
| 57 |
+
|
| 58 |
+
from unsloth import FastLanguageModel, is_bf16_supported
|
| 59 |
+
from transformers import TrainingArguments
|
| 60 |
+
from trl import SFTTrainer
|
| 61 |
+
import os
|
| 62 |
+
|
| 63 |
+
data = []
|
| 64 |
+
for line in ft_data.strip().split('\n'):
|
| 65 |
+
if line.strip():
|
| 66 |
+
data.append(json.loads(line))
|
| 67 |
+
|
| 68 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 69 |
+
model_name=model_name,
|
| 70 |
+
max_seq_length=512,
|
| 71 |
+
load_in_4bit=True,
|
| 72 |
+
dtype=None
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
print("Configuring LoRA...")
|
| 76 |
+
model = FastLanguageModel.get_peft_model(
|
| 77 |
+
model,
|
| 78 |
+
r=128,
|
| 79 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
| 80 |
+
lora_alpha=16,
|
| 81 |
+
lora_dropout=0,
|
| 82 |
+
bias="none",
|
| 83 |
+
random_state=2001,
|
| 84 |
+
use_gradient_checkpointing="unsloth",
|
| 85 |
+
loftq_config=None,
|
| 86 |
+
use_rslora=False
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
def format_example(example):
|
| 90 |
+
text = tokenizer.apply_chat_template(
|
| 91 |
+
example['messages'],
|
| 92 |
+
tokenize=False,
|
| 93 |
+
add_generation_prompt=False
|
| 94 |
+
)
|
| 95 |
+
return {"text": text}
|
| 96 |
+
|
| 97 |
+
dataset = Dataset.from_list(data)
|
| 98 |
+
dataset = dataset.map(format_example)
|
| 99 |
+
|
| 100 |
+
trainer = SFTTrainer(
|
| 101 |
+
model=model,
|
| 102 |
+
tokenizer=tokenizer,
|
| 103 |
+
train_dataset=dataset,
|
| 104 |
+
dataset_text_field="text",
|
| 105 |
+
max_seq_length=2000,
|
| 106 |
+
dataset_num_proc=2,
|
| 107 |
+
args=TrainingArguments(
|
| 108 |
+
per_device_train_batch_size=2,
|
| 109 |
+
gradient_accumulation_steps=8,
|
| 110 |
+
warmup_steps=5,
|
| 111 |
+
num_train_epochs=1,
|
| 112 |
+
max_steps=30,
|
| 113 |
+
learning_rate=2e-4,
|
| 114 |
+
fp16=not is_bf16_supported(),
|
| 115 |
+
bf16=is_bf16_supported(),
|
| 116 |
+
logging_steps=1,
|
| 117 |
+
optim="adamw_8bit",
|
| 118 |
+
lr_scheduler_type="linear",
|
| 119 |
+
output_dir="/tmp/training_output",
|
| 120 |
+
seed=42,
|
| 121 |
+
report_to="none",
|
| 122 |
+
dataloader_num_workers=0
|
| 123 |
+
)
|
| 124 |
+
)
|
| 125 |
+
print("Training started...")
|
| 126 |
+
trainer.train()
|
| 127 |
+
print("Training complete!")
|
| 128 |
+
|
| 129 |
+
timestamp = int(time.time())
|
| 130 |
+
volume_path = f"/models/finetuned-{timestamp}"
|
| 131 |
+
|
| 132 |
+
os.makedirs(volume_path, exist_ok=True)
|
| 133 |
+
print(f"Saving to: {volume_path}")
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
model.save_pretrained_merged(volume_path, tokenizer, save_method="merged_16bit")
|
| 137 |
+
print("Model saved!")
|
| 138 |
+
model.config.save_pretrained(volume_path)
|
| 139 |
+
|
| 140 |
+
trainer.save_model(volume_path)
|
| 141 |
+
tokenizer.save_pretrained(volume_path)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
volume.commit()
|
| 148 |
+
print("Volume has been committed!")
|
| 149 |
+
|
| 150 |
+
del model
|
| 151 |
+
del trainer
|
| 152 |
+
import gc
|
| 153 |
+
gc.collect()
|
| 154 |
+
torch.cuda.empty_cache()
|
| 155 |
+
|
| 156 |
+
return {
|
| 157 |
+
"status":"success",
|
| 158 |
+
"volume_path":volume_path,
|
| 159 |
+
"timestamp": timestamp
|
| 160 |
+
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
@app.function(
|
| 167 |
+
image=modal_image,
|
| 168 |
+
volumes={"/models": volume},
|
| 169 |
+
timeout=900,
|
| 170 |
+
secrets=[modal.Secret.from_name("huggingface-secret")]
|
| 171 |
+
)
|
| 172 |
+
def upload_to_hf_from_volume(volume_path: str, timestamp: int, repoName: str):
|
| 173 |
+
"""
|
| 174 |
+
Upload model directly from Modal Volume to HuggingFace
|
| 175 |
+
This runs on Modal's fast network - no download to local machine needed!
|
| 176 |
+
"""
|
| 177 |
+
from huggingface_hub import HfApi, create_repo
|
| 178 |
+
import os
|
| 179 |
+
|
| 180 |
+
print(f"π€ Uploading from {volume_path} to HuggingFace...")
|
| 181 |
+
|
| 182 |
+
if not os.path.exists(volume_path):
|
| 183 |
+
raise FileNotFoundError(f"Model not found at: {volume_path}")
|
| 184 |
+
|
| 185 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 186 |
+
if not hf_token:
|
| 187 |
+
raise ValueError("HF_TOKEN not found in Modal secrets")
|
| 188 |
+
|
| 189 |
+
hf_api = HfApi()
|
| 190 |
+
repo_id = f"mahreenfathima/finetuned-{repoName}-{timestamp}"
|
| 191 |
+
|
| 192 |
+
print(f"Creating HuggingFace repo: {repo_id}")
|
| 193 |
+
create_repo(
|
| 194 |
+
repo_id=repo_id,
|
| 195 |
+
token=hf_token,
|
| 196 |
+
private=False,
|
| 197 |
+
exist_ok=True,
|
| 198 |
+
repo_type="model"
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
print(f"Uploading files to {repo_id}...")
|
| 202 |
+
hf_api.upload_folder(
|
| 203 |
+
folder_path=volume_path,
|
| 204 |
+
repo_id=repo_id,
|
| 205 |
+
token=hf_token,
|
| 206 |
+
commit_message=f"Fine-tuned model (timestamp: {timestamp})"
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
model_url = f"https://huggingface.co/{repo_id}"
|
| 210 |
+
print(f"β
Successfully uploaded to {model_url}")
|
| 211 |
+
|
| 212 |
+
return {
|
| 213 |
+
"model_url": model_url,
|
| 214 |
+
"repo_id": repo_id
|
| 215 |
+
}
|
| 216 |
+
|
| 217 |
+
@app.function(
|
| 218 |
+
gpu="T4",
|
| 219 |
+
timeout=600,
|
| 220 |
+
image=modal_image
|
| 221 |
+
)
|
| 222 |
+
def evaluate_model(repo_id: str, test_inputs: list[str]):
|
| 223 |
+
"""Load model and run inference on test cases"""
|
| 224 |
+
from unsloth import FastLanguageModel
|
| 225 |
+
from transformers import AutoTokenizer
|
| 226 |
+
import torch
|
| 227 |
+
|
| 228 |
+
print(f"Loading model: {repo_id}")
|
| 229 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 230 |
+
model_name=repo_id,
|
| 231 |
+
max_seq_length=512,
|
| 232 |
+
load_in_4bit=True,
|
| 233 |
+
dtype=None,
|
| 234 |
+
)
|
| 235 |
+
if tokenizer.pad_token is None:
|
| 236 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
outputs = []
|
| 240 |
+
for test_input in test_inputs:
|
| 241 |
+
print(f"Processing: {test_input[:50]}...")
|
| 242 |
+
inputs = tokenizer(test_input, return_tensors="pt").to(model.device)
|
| 243 |
+
|
| 244 |
+
with torch.no_grad():
|
| 245 |
+
output = model.generate(
|
| 246 |
+
**inputs,
|
| 247 |
+
max_new_tokens=100,
|
| 248 |
+
temperature=0.5,
|
| 249 |
+
do_sample=True
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
decoded = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 253 |
+
if decoded.startswith(test_input):
|
| 254 |
+
decoded = decoded[len(test_input):].strip()
|
| 255 |
+
outputs.append(decoded)
|
| 256 |
+
|
| 257 |
+
return outputs
|
| 258 |
+
|
| 259 |
+
|
requirements.txt
ADDED
|
Binary file (5.61 kB). View file
|
|
|
server.py
ADDED
|
@@ -0,0 +1,515 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#Ψ¨Ψ³Ω
Ψ§ΩΩΩ Ψ§ΩΨ±ΨΩ
Ω Ψ§ΩΨ±ΨΩΩ
|
| 2 |
+
from unittest import result
|
| 3 |
+
from fastmcp import FastMCP, Context
|
| 4 |
+
import asyncio
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
import time
|
| 8 |
+
import re
|
| 9 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 10 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 11 |
+
from langchain_community.tools import DuckDuckGoSearchRun
|
| 12 |
+
from langchain_groq import ChatGroq
|
| 13 |
+
from dotenv import load_dotenv
|
| 14 |
+
import nltk
|
| 15 |
+
from modal_tool import train_with_modal, app, upload_to_hf_from_volume, evaluate_model
|
| 16 |
+
|
| 17 |
+
load_dotenv()
|
| 18 |
+
|
| 19 |
+
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
|
| 20 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
nltk.data.find('tokenizers/punkt')
|
| 24 |
+
except LookupError:
|
| 25 |
+
nltk.download('punkt', quiet=True)
|
| 26 |
+
|
| 27 |
+
mcp = FastMCP(name="FistalMCP")
|
| 28 |
+
|
| 29 |
+
GOOGLE_API_KEYS = [
|
| 30 |
+
os.getenv("GOOGLE_API_KEY_1"),
|
| 31 |
+
os.getenv("GOOGLE_API_KEY_2"),
|
| 32 |
+
os.getenv("GOOGLE_API_KEY_3")
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
GOOGLE_API_KEYS = [key for key in GOOGLE_API_KEYS if key]
|
| 36 |
+
|
| 37 |
+
if not GOOGLE_API_KEYS:
|
| 38 |
+
raise ValueError("Where are your keys?")
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
async def genBatch(topic: str, samples_per_batch: int, batch_num: int, api_key: str, task_type: str) -> list:
|
| 42 |
+
"""Generate one batch of samples using a single API key"""
|
| 43 |
+
|
| 44 |
+
if not api_key or api_key == "YOUR_API_KEY":
|
| 45 |
+
return []
|
| 46 |
+
|
| 47 |
+
llm = ChatGoogleGenerativeAI(
|
| 48 |
+
model="gemini-2.5-flash",
|
| 49 |
+
temperature=0.7,
|
| 50 |
+
google_api_key=api_key
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
prompt_template = """
|
| 54 |
+
You are an expert dataset generator.
|
| 55 |
+
Generate authentic, high-quality data on the topic: {topic} for task type: {task_type} using your knowledge.
|
| 56 |
+
Generate exactly {num} concise, varied, and high-quality samples.
|
| 57 |
+
Return a JSON list of objects, each with keys: instruction, input, and output.
|
| 58 |
+
Do not add extra texts, markdown, or code fences.
|
| 59 |
+
RESPONSE:
|
| 60 |
+
"""
|
| 61 |
+
|
| 62 |
+
promptJSON = ChatPromptTemplate.from_template(prompt_template)
|
| 63 |
+
chain = promptJSON | llm
|
| 64 |
+
|
| 65 |
+
try:
|
| 66 |
+
user_input = {
|
| 67 |
+
"topic": topic,
|
| 68 |
+
"num": samples_per_batch,
|
| 69 |
+
"task_type": task_type
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
response = await asyncio.to_thread(chain.invoke, user_input)
|
| 73 |
+
content = response.content.strip()
|
| 74 |
+
|
| 75 |
+
if content.startswith("```json"):
|
| 76 |
+
content = content[7:]
|
| 77 |
+
if content.startswith("```"):
|
| 78 |
+
content = content[3:]
|
| 79 |
+
if content.endswith("```"):
|
| 80 |
+
content = content[:-3]
|
| 81 |
+
|
| 82 |
+
content = content.strip()
|
| 83 |
+
data = json.loads(content)
|
| 84 |
+
|
| 85 |
+
return data if isinstance(data, list) else [data]
|
| 86 |
+
|
| 87 |
+
except json.JSONDecodeError as e:
|
| 88 |
+
print(f"JSON decode error in batch {batch_num}: {e}")
|
| 89 |
+
return []
|
| 90 |
+
except Exception as e:
|
| 91 |
+
print(f"Error in batch {batch_num}: {e}")
|
| 92 |
+
return []
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
@mcp.tool()
|
| 96 |
+
async def generate_json_data(topic: str, task_type: str, num_samples: int = 1000) -> str:
|
| 97 |
+
"""
|
| 98 |
+
Generate a training dataset with instruction, input, and output fields.
|
| 99 |
+
Uses parallel batching for efficiency. Can generate up to 2000 samples.
|
| 100 |
+
|
| 101 |
+
Args:
|
| 102 |
+
topic: The topic or theme for the dataset
|
| 103 |
+
num_samples: Number of training examples to generate (recommended: 100-2000)
|
| 104 |
+
|
| 105 |
+
Returns:
|
| 106 |
+
JSON string with status, topic, total_samples, and data array
|
| 107 |
+
"""
|
| 108 |
+
topic = str(topic).strip() if topic else ""
|
| 109 |
+
task_type = str(task_type).strip() if task_type else "text-generation"
|
| 110 |
+
|
| 111 |
+
try:
|
| 112 |
+
num_samples = int(num_samples)
|
| 113 |
+
except (ValueError, TypeError):
|
| 114 |
+
num_samples = 100
|
| 115 |
+
|
| 116 |
+
if not topic:
|
| 117 |
+
return json.dumps({
|
| 118 |
+
"status": "error",
|
| 119 |
+
"message": "Topic cannot be empty"
|
| 120 |
+
})
|
| 121 |
+
if num_samples <= 0 or num_samples > 2000:
|
| 122 |
+
num_samples = min(max(50, num_samples), 2000)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
valid_keys = [k for k in GOOGLE_API_KEYS if k and k.strip() and k != "YOUR_API_KEY"]
|
| 126 |
+
if not valid_keys:
|
| 127 |
+
return json.dumps({
|
| 128 |
+
"status": "error",
|
| 129 |
+
"message": "No valid Google API keys configured"
|
| 130 |
+
})
|
| 131 |
+
|
| 132 |
+
start_time = time.time()
|
| 133 |
+
samples_per_batch = 50
|
| 134 |
+
total_batches = (num_samples + samples_per_batch - 1) // samples_per_batch
|
| 135 |
+
|
| 136 |
+
try:
|
| 137 |
+
tasks = []
|
| 138 |
+
|
| 139 |
+
for batch_num in range(total_batches):
|
| 140 |
+
api_key = valid_keys[batch_num % len(valid_keys)]
|
| 141 |
+
task = genBatch(
|
| 142 |
+
topic=topic.strip(),
|
| 143 |
+
samples_per_batch=samples_per_batch,
|
| 144 |
+
batch_num=batch_num + 1,
|
| 145 |
+
api_key=api_key,
|
| 146 |
+
task_type=task_type.strip()
|
| 147 |
+
)
|
| 148 |
+
tasks.append(task)
|
| 149 |
+
|
| 150 |
+
results = await asyncio.gather(*tasks, return_exceptions=True)
|
| 151 |
+
|
| 152 |
+
all_samples = []
|
| 153 |
+
for batch_result in results:
|
| 154 |
+
if isinstance(batch_result, Exception):
|
| 155 |
+
continue
|
| 156 |
+
if isinstance(batch_result, list):
|
| 157 |
+
all_samples.extend(batch_result)
|
| 158 |
+
|
| 159 |
+
all_samples = all_samples[:num_samples]
|
| 160 |
+
end_time = time.time()
|
| 161 |
+
gen_time = end_time - start_time
|
| 162 |
+
|
| 163 |
+
return json.dumps({
|
| 164 |
+
"status": "success",
|
| 165 |
+
"topic": topic,
|
| 166 |
+
"task_type": task_type,
|
| 167 |
+
"total_samples": len(all_samples),
|
| 168 |
+
"requested_samples": num_samples,
|
| 169 |
+
"total_batches": total_batches,
|
| 170 |
+
"generation_time_seconds": round(gen_time, 1),
|
| 171 |
+
"generation_time_minutes": round(gen_time / 60, 2),
|
| 172 |
+
"samples_per_second": round(len(all_samples) / gen_time, 2) if gen_time > 0 else 0,
|
| 173 |
+
"data": all_samples
|
| 174 |
+
})
|
| 175 |
+
|
| 176 |
+
except Exception as e:
|
| 177 |
+
return json.dumps({
|
| 178 |
+
"status": "error",
|
| 179 |
+
"message": f"Error generating dataset: {str(e)}"
|
| 180 |
+
})
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
@mcp.tool()
|
| 184 |
+
async def format_json(raw_data) -> str:
|
| 185 |
+
"""
|
| 186 |
+
Convert raw dataset to ChatML format for training
|
| 187 |
+
|
| 188 |
+
Args:
|
| 189 |
+
raw_data: List or JSON string of samples with instruction/input/output
|
| 190 |
+
|
| 191 |
+
Returns:
|
| 192 |
+
JSON string with status, num_samples, and formatted data
|
| 193 |
+
"""
|
| 194 |
+
try:
|
| 195 |
+
if isinstance(raw_data, list):
|
| 196 |
+
data = raw_data
|
| 197 |
+
elif isinstance(raw_data, str):
|
| 198 |
+
parsed = json.loads(raw_data)
|
| 199 |
+
if isinstance(parsed, dict) and "data" in parsed:
|
| 200 |
+
data = parsed["data"]
|
| 201 |
+
else:
|
| 202 |
+
data = parsed
|
| 203 |
+
elif isinstance(raw_data, dict) and "data" in raw_data:
|
| 204 |
+
data = raw_data["data"]
|
| 205 |
+
else:
|
| 206 |
+
return json.dumps({
|
| 207 |
+
"status": "error",
|
| 208 |
+
"message": f"Unexpected input type: {type(raw_data).__name__}"
|
| 209 |
+
})
|
| 210 |
+
|
| 211 |
+
if not isinstance(data, list):
|
| 212 |
+
return json.dumps({
|
| 213 |
+
"status": "error",
|
| 214 |
+
"message": "Data must be a list of samples"
|
| 215 |
+
})
|
| 216 |
+
|
| 217 |
+
# Convert to ChatML format
|
| 218 |
+
converted = []
|
| 219 |
+
for item in data:
|
| 220 |
+
if not isinstance(item, dict):
|
| 221 |
+
continue
|
| 222 |
+
|
| 223 |
+
if 'instruction' not in item or 'output' not in item:
|
| 224 |
+
continue
|
| 225 |
+
|
| 226 |
+
user_msg = str(item['instruction'])
|
| 227 |
+
if item.get('input'):
|
| 228 |
+
user_msg += f"\n\n{item['input']}"
|
| 229 |
+
|
| 230 |
+
converted.append({
|
| 231 |
+
"messages": [
|
| 232 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 233 |
+
{"role": "user", "content": user_msg},
|
| 234 |
+
{"role": "assistant", "content": str(item['output'])}
|
| 235 |
+
]
|
| 236 |
+
})
|
| 237 |
+
|
| 238 |
+
if not converted:
|
| 239 |
+
return json.dumps({
|
| 240 |
+
"status": "error",
|
| 241 |
+
"message": "No valid samples to format"
|
| 242 |
+
})
|
| 243 |
+
|
| 244 |
+
return json.dumps({
|
| 245 |
+
"status": "success",
|
| 246 |
+
"num_samples": len(converted),
|
| 247 |
+
"data": converted,
|
| 248 |
+
"message": f"β
Formatted {len(converted)} samples"
|
| 249 |
+
}, ensure_ascii=False)
|
| 250 |
+
|
| 251 |
+
except Exception as e:
|
| 252 |
+
import traceback
|
| 253 |
+
return json.dumps({
|
| 254 |
+
"status": "error",
|
| 255 |
+
"message": f"Formatting failed: {str(e)}",
|
| 256 |
+
"traceback": traceback.format_exc()
|
| 257 |
+
})
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
@mcp.tool()
|
| 262 |
+
async def finetune_model(formatted_data, model_name: str, topic: str, task_type: str) -> str:
|
| 263 |
+
"""
|
| 264 |
+
Fine-tune model on Modal GPU
|
| 265 |
+
|
| 266 |
+
Args:
|
| 267 |
+
formatted_data: List or JSON string with formatted training samples
|
| 268 |
+
model_name: Base model to fine-tune
|
| 269 |
+
|
| 270 |
+
Returns:
|
| 271 |
+
JSON string with status, repo_id, model_url
|
| 272 |
+
"""
|
| 273 |
+
model_name = str(model_name).strip()
|
| 274 |
+
|
| 275 |
+
models = [
|
| 276 |
+
"unsloth/Llama-3.2-1B-Instruct-bnb-4bit",
|
| 277 |
+
"unsloth/Phi-3-mini-4k-instruct",
|
| 278 |
+
"unsloth/Phi-3-medium-4k-instruct",
|
| 279 |
+
"unsloth/Llama-3.2-3B-Instruct-bnb-4bit",
|
| 280 |
+
"unsloth/Qwen2.5-3B-Instruct-bnb-4bit",
|
| 281 |
+
"unsloth/Qwen2.5-1.5B-Instruct-bnb-4bit",
|
| 282 |
+
"unsloth/Qwen2.5-0.5B-Instruct-bnb-4bit",
|
| 283 |
+
"unsloth/Qwen2.5-Coder-3B-Instruct-bnb-4bit",
|
| 284 |
+
"unsloth/gemma-2-2b-it-bnb-4bit",
|
| 285 |
+
"unsloth/SmolLM2-1.7B-Instruct-bnb-4bit",
|
| 286 |
+
"unsloth/Phi-3.5-mini-instruct-bnb-4bit",
|
| 287 |
+
"unsloth/Granite-3.0-2b-instruct-bnb-4bit",
|
| 288 |
+
"unsloth/granite-4.0-h-1b-bnb-4bit"
|
| 289 |
+
]
|
| 290 |
+
|
| 291 |
+
if model_name not in models:
|
| 292 |
+
return json.dumps({
|
| 293 |
+
"status": "error",
|
| 294 |
+
"message": f"Model not supported. Choose from: {', '.join(models[:3])}..."
|
| 295 |
+
})
|
| 296 |
+
|
| 297 |
+
try:
|
| 298 |
+
if isinstance(formatted_data, list):
|
| 299 |
+
training_data = formatted_data
|
| 300 |
+
elif isinstance(formatted_data, str):
|
| 301 |
+
parsed = json.loads(formatted_data)
|
| 302 |
+
if isinstance(parsed, dict) and "data" in parsed:
|
| 303 |
+
training_data = parsed["data"]
|
| 304 |
+
else:
|
| 305 |
+
training_data = parsed
|
| 306 |
+
elif isinstance(formatted_data, dict) and "data" in formatted_data:
|
| 307 |
+
training_data = formatted_data["data"]
|
| 308 |
+
else:
|
| 309 |
+
return json.dumps({
|
| 310 |
+
"status": "error",
|
| 311 |
+
"message": f"Unexpected input type: {type(formatted_data).__name__}"
|
| 312 |
+
})
|
| 313 |
+
|
| 314 |
+
if not isinstance(training_data, list) or not training_data:
|
| 315 |
+
return json.dumps({
|
| 316 |
+
"status": "error",
|
| 317 |
+
"message": "No training samples provided"
|
| 318 |
+
})
|
| 319 |
+
|
| 320 |
+
jsonl_content = "\n".join([json.dumps(s, ensure_ascii=False) for s in training_data])
|
| 321 |
+
|
| 322 |
+
with app.run():
|
| 323 |
+
result = train_with_modal.remote(jsonl_content, model_name)
|
| 324 |
+
|
| 325 |
+
if result["status"] != "success":
|
| 326 |
+
return json.dumps({
|
| 327 |
+
"status": "error",
|
| 328 |
+
"message": "Training failed"
|
| 329 |
+
})
|
| 330 |
+
|
| 331 |
+
repoTemp = """
|
| 332 |
+
Generate a short repository name for an unsloth finetuned model based on {topic} and {task_type}.
|
| 333 |
+
Use '_' instead of spaces. Only return the name without quotations.
|
| 334 |
+
"""
|
| 335 |
+
repoPrompt = ChatPromptTemplate.from_template(repoTemp)
|
| 336 |
+
llm = ChatGroq(
|
| 337 |
+
model="llama-3.1-8b-instant",
|
| 338 |
+
temperature=0.4,
|
| 339 |
+
api_key=GROQ_API_KEY
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
chain = repoPrompt | llm
|
| 343 |
+
|
| 344 |
+
inp = {
|
| 345 |
+
"topic": topic,
|
| 346 |
+
"task_type": task_type
|
| 347 |
+
}
|
| 348 |
+
|
| 349 |
+
repoName = await asyncio.to_thread(chain.invoke, inp)
|
| 350 |
+
repoName = repoName.content.strip()
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
with app.run():
|
| 355 |
+
hf_result = upload_to_hf_from_volume.remote(
|
| 356 |
+
result["volume_path"],
|
| 357 |
+
result["timestamp"],
|
| 358 |
+
repoName
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
return json.dumps({
|
| 362 |
+
"status": "success",
|
| 363 |
+
"repo_id": str(hf_result["repo_id"]),
|
| 364 |
+
"model_url": str(hf_result["model_url"]),
|
| 365 |
+
"model_path": str(hf_result["repo_id"]),
|
| 366 |
+
"num_samples": len(training_data),
|
| 367 |
+
"message": f"β
Model at {hf_result['model_url']}"
|
| 368 |
+
})
|
| 369 |
+
|
| 370 |
+
except Exception as e:
|
| 371 |
+
import traceback
|
| 372 |
+
return json.dumps({
|
| 373 |
+
"status": "error",
|
| 374 |
+
"message": f"Training failed: {str(e)}",
|
| 375 |
+
"traceback": traceback.format_exc()
|
| 376 |
+
})
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
@mcp.tool()
|
| 380 |
+
async def llm_as_judge(repo_id:str, topic: str, task_type: str) -> dict:
|
| 381 |
+
"""Use LLM to judge model quality based on topic and task type"""
|
| 382 |
+
import evaluate
|
| 383 |
+
eval_llm = ChatGroq(
|
| 384 |
+
model="llama-3.1-8b-instant",
|
| 385 |
+
temperature=0.2,
|
| 386 |
+
api_key=GROQ_API_KEY
|
| 387 |
+
)
|
| 388 |
+
test_prompt_text = f"""Generate 3 test cases for evaluating a model fine-tuned strictly based on **{topic} for {task_type}**.
|
| 389 |
+
Return ONLY a JSON array with this exact format, no other text:
|
| 390 |
+
[{{"input": "test question 1", "expected_output": "expected answer 1"}}, {{"input": "test question 2", "expected_output": "expected answer 2"}}, {{"input": "test question 3", "expected_output": "expected answer 3"}}]"""
|
| 391 |
+
try:
|
| 392 |
+
text_responses = await eval_llm.ainvoke(test_prompt_text)
|
| 393 |
+
response = text_responses.content.strip()
|
| 394 |
+
response = response.replace("```json", "").replace("```", "").strip()
|
| 395 |
+
import re
|
| 396 |
+
match = re.search(r'\[.*\]', response, re.DOTALL)
|
| 397 |
+
if match:
|
| 398 |
+
response = match.group(0)
|
| 399 |
+
|
| 400 |
+
test_cases = json.loads(response)[:3]
|
| 401 |
+
|
| 402 |
+
test_inputs = [case['input'] for case in test_cases]
|
| 403 |
+
|
| 404 |
+
with app.run():
|
| 405 |
+
ft_output = evaluate_model.remote(repo_id, test_inputs)
|
| 406 |
+
|
| 407 |
+
outputs = []
|
| 408 |
+
for i, case in enumerate(test_cases):
|
| 409 |
+
outputs.append(
|
| 410 |
+
{
|
| 411 |
+
"input": case['input'],
|
| 412 |
+
"expected_output": case['expected_output'],
|
| 413 |
+
"model_output": ft_output[i]
|
| 414 |
+
|
| 415 |
+
}
|
| 416 |
+
)
|
| 417 |
+
#METRICS:
|
| 418 |
+
bleu = evaluate.load("bleu")
|
| 419 |
+
rouge = evaluate.load("rouge")
|
| 420 |
+
|
| 421 |
+
predictions = [output['model_output'] for output in outputs]
|
| 422 |
+
references = [[output['expected_output']] for output in outputs]
|
| 423 |
+
|
| 424 |
+
bleu_score = bleu.compute(predictions=predictions, references=references)
|
| 425 |
+
rouge_score = rouge.compute(predictions=predictions, references=references)
|
| 426 |
+
additional_metrics = {}
|
| 427 |
+
if task_type.lower() in ["classification", "question-answering"]:
|
| 428 |
+
accuracy_metric = evaluate.load("accuracy")
|
| 429 |
+
f1_metric = evaluate.load("f1")
|
| 430 |
+
|
| 431 |
+
predictions_binary = [1 if pred.strip().lower() == ref[0].strip().lower() else 0
|
| 432 |
+
for pred, ref in zip(predictions, references)]
|
| 433 |
+
references_binary = [1] * len(predictions_binary)
|
| 434 |
+
|
| 435 |
+
accuracy_score = accuracy_metric.compute(predictions=predictions_binary, references=references_binary)
|
| 436 |
+
f1_score = f1_metric.compute(predictions=predictions_binary, references=references_binary, average="binary")
|
| 437 |
+
|
| 438 |
+
additional_metrics["accuracy"] = accuracy_score["accuracy"]
|
| 439 |
+
additional_metrics["f1_score"] = f1_score["f1"]
|
| 440 |
+
eval_prompt_text = f"""You are evaluating a model fine-tuned using Unsloth on the topic "{topic}" for {task_type} tasks.
|
| 441 |
+
|
| 442 |
+
**Your Task:** Provide an accurate, positive markdown evaluation report focusing on the model's strengths and capabilities based on your judgement and metrics.
|
| 443 |
+
|
| 444 |
+
**Test Results:**
|
| 445 |
+
|
| 446 |
+
Test Cases:
|
| 447 |
+
{json.dumps(test_cases, indent=2)}
|
| 448 |
+
|
| 449 |
+
Model Outputs:
|
| 450 |
+
{json.dumps(outputs, indent=2)}
|
| 451 |
+
|
| 452 |
+
**Metrics**
|
| 453 |
+
- BLEU Score: {bleu_score['bleu']:.4f}
|
| 454 |
+
- ROUGE-L Score: {rouge_score['rougeL']:.4f}
|
| 455 |
+
{f"- Accuracy: {additional_metrics.get('accuracy', 0):.4f}" if task_type.lower() in ["classification", "question-answering"] else ""}
|
| 456 |
+
{f"- F1 Score: {additional_metrics.get('f1_score', 0):.4f}" if task_type.lower() in ["classification", "question-answering"] else ""}
|
| 457 |
+
|
| 458 |
+
**Report Structure:**
|
| 459 |
+
|
| 460 |
+
## π Evaluation Report
|
| 461 |
+
|
| 462 |
+
### π Performance Overview
|
| 463 |
+
Create a comparison table with columns: Test Input | Expected Output | Model Output | β
Assessment
|
| 464 |
+
|
| 465 |
+
### π Metrics:
|
| 466 |
+
- Explain each evaluated metrics and categorize the performance based on average threshold
|
| 467 |
+
- Use percentages and numerical figures to stance yoir report
|
| 468 |
+
|
| 469 |
+
### πͺ Key Strengths
|
| 470 |
+
Highlight what the model does well:
|
| 471 |
+
- Accuracy and relevance
|
| 472 |
+
- Response coherence
|
| 473 |
+
- Task-specific capabilities
|
| 474 |
+
- Language quality
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
### β¨ Conclusion
|
| 478 |
+
Summarize the model's overall performance and recommended use cases.
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
Now write the complete evaluation report following this structure. Be enthusiastic and highlight strengths! π"""
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
eval_response = await eval_llm.ainvoke(eval_prompt_text)
|
| 485 |
+
|
| 486 |
+
return {
|
| 487 |
+
"status": "success",
|
| 488 |
+
"report": str(eval_response.content),
|
| 489 |
+
"test_cases": test_cases,
|
| 490 |
+
"model_outputs": outputs
|
| 491 |
+
}
|
| 492 |
+
|
| 493 |
+
except Exception as e:
|
| 494 |
+
return {
|
| 495 |
+
"status": "error",
|
| 496 |
+
"message": str(e),
|
| 497 |
+
"error_type": type(e).__name__
|
| 498 |
+
}
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
if __name__ == "__main__":
|
| 507 |
+
mcp.run()
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
|
static/fullnew.jpg
ADDED
|
static/new.jpg
ADDED
|
Git LFS Details
|