Spaces:
Sleeping
Sleeping
| # ------------------------------------------------------------------------------ | |
| # OptVQ: Preventing Local Pitfalls in Vector Quantization via Optimal Transport | |
| # Copyright (c) 2024 Borui Zhang. All Rights Reserved. | |
| # Licensed under the MIT License [see LICENSE for details] | |
| # ------------------------------------------------------------------------------ | |
| # Modified from [thuanz123/enhancing-transformers](https://github.com/thuanz123/enhancing-transformers) | |
| # Copyright (c) 2022 Thuan H. Nguyen. All Rights Reserved. | |
| # ------------------------------------------------------------------------------ | |
| # Modified from [CompVis/taming-transformers](https://github.com/CompVis/taming-transformers) | |
| # Copyright (c) 2020 Patrick Esser and Robin Rombach and Björn Ommer. All Rights Reserved. | |
| # ------------------------------------------------------------------------------ | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import lpips | |
| from revq.models.discriminator import NLayerDiscriminator, weights_init | |
| class DummyLoss(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def hinge_d_loss(logits_real, logits_fake): | |
| loss_real = torch.mean(F.relu(1. - logits_real)) | |
| loss_fake = torch.mean(F.relu(1. + logits_fake)) | |
| d_loss = 0.5 * (loss_real + loss_fake) | |
| return d_loss | |
| def vanilla_d_loss(logits_real, logits_fake): | |
| d_loss = 0.5 * ( | |
| torch.mean(torch.nn.functional.softplus(-logits_real)) + | |
| torch.mean(torch.nn.functional.softplus(logits_fake))) | |
| return d_loss | |
| class AELossWithDisc(nn.Module): | |
| def __init__(self, | |
| disc_start, | |
| pixelloss_weight=1.0, | |
| disc_in_channels=3, | |
| disc_num_layers=3, | |
| use_actnorm=False, | |
| disc_ndf=64, | |
| disc_conditional=False, | |
| disc_loss="hinge", | |
| loss_l1_weight: float = 1.0, | |
| loss_l2_weight: float = 1.0, | |
| loss_p_weight: float = 1.0, | |
| loss_q_weight: float = 1.0, | |
| loss_g_weight: float = 1.0, | |
| loss_d_weight: float = 1.0 | |
| ): | |
| super(AELossWithDisc, self).__init__() | |
| assert disc_loss in ["hinge", "vanilla"] | |
| self.pixel_weight = pixelloss_weight | |
| self.perceptual_loss = lpips.LPIPS(net="vgg", verbose=False).eval() | |
| self.loss_l1_weight = loss_l1_weight | |
| self.loss_l2_weight = loss_l2_weight | |
| self.loss_p_weight = loss_p_weight | |
| self.loss_q_weight = loss_q_weight | |
| self.loss_g_weight = loss_g_weight | |
| self.loss_d_weight = loss_d_weight | |
| self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels, | |
| n_layers=disc_num_layers, | |
| use_actnorm=use_actnorm, | |
| ndf=disc_ndf | |
| ).apply(weights_init) | |
| self.discriminator_iter_start = disc_start | |
| if disc_loss == "hinge": | |
| self.disc_loss = hinge_d_loss | |
| elif disc_loss == "vanilla": | |
| self.disc_loss = vanilla_d_loss | |
| else: | |
| raise ValueError(f"Unknown GAN loss '{disc_loss}'.") | |
| print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.") | |
| self.disc_conditional = disc_conditional | |
| def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): | |
| nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] | |
| g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] | |
| g_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) | |
| g_weight = torch.clamp(g_weight, 0.0, 1e4).detach() | |
| g_weight = g_weight * self.loss_g_weight | |
| # detection nan | |
| if torch.isnan(g_weight).any(): | |
| g_weight = torch.tensor(0.0, device=g_weight.device) | |
| return g_weight | |
| def forward(self, codebook_loss, inputs, reconstructions, mode, last_layer=None, cond=None, global_step=0): | |
| x = inputs.contiguous().float() | |
| x_rec = reconstructions.contiguous().float() | |
| # compute q loss | |
| loss_q = codebook_loss.mean() | |
| # compute l1 loss | |
| loss_l1 = (x_rec - x).abs().mean() if self.loss_l1_weight > 0.0 else torch.tensor(0.0, device=x.device) | |
| # compute l2 loss | |
| loss_l2 = (x_rec - x).pow(2).mean() if self.loss_l2_weight > 0.0 else torch.tensor(0.0, device=x.device) | |
| # compute perceptual loss | |
| loss_p = self.perceptual_loss(x, x_rec).mean() if self.loss_p_weight > 0.0 else torch.tensor(0.0, device=x.device) | |
| # intigrate reconstruction loss | |
| loss_rec = loss_l1 * self.loss_l1_weight + \ | |
| loss_l2 * self.loss_l2_weight + \ | |
| loss_p * self.loss_p_weight | |
| # setup the factor_disc | |
| if global_step < self.discriminator_iter_start: | |
| factor_disc = 0.0 | |
| else: | |
| factor_disc = 1.0 | |
| # now the GAN part | |
| if mode == 0: | |
| # generator update | |
| if cond is None: | |
| assert not self.disc_conditional | |
| logits_fake = self.discriminator(x_rec) | |
| else: | |
| assert self.disc_conditional | |
| logits_fake = self.discriminator(torch.cat((x_rec, cond), dim=1)) | |
| # compute g loss | |
| loss_g = - logits_fake.mean() | |
| try: | |
| loss_g_weight = self.calculate_adaptive_weight(loss_rec, loss_g, last_layer=last_layer) | |
| except RuntimeError: | |
| # assert not self.training | |
| loss_g_weight = torch.tensor(0.0) | |
| loss = loss_g * loss_g_weight * factor_disc + \ | |
| loss_q * self.loss_q_weight + \ | |
| loss_rec | |
| log = {"total_loss": loss.item(), | |
| "loss_q": loss_q.item(), | |
| "loss_rec": loss_rec.item(), | |
| "loss_l1": loss_l1.item(), | |
| "loss_l2": loss_l2.item(), | |
| "loss_p": loss_p.item(), | |
| "loss_g": loss_g.item(), | |
| "loss_g_weight": loss_g_weight.item(), | |
| "factor_disc": factor_disc, | |
| } | |
| return loss, log | |
| if mode == 1: | |
| # second pass for discriminator update | |
| if cond is None: | |
| logits_real = self.discriminator(x.detach()) | |
| logits_fake = self.discriminator(x_rec.detach()) | |
| else: | |
| logits_real = self.discriminator(torch.cat((x.detach(), cond), dim=1)) | |
| logits_fake = self.discriminator(torch.cat((x_rec.detach(), cond), dim=1)) | |
| loss_d = self.disc_loss(logits_real, logits_fake).mean() | |
| loss = loss_d * self.loss_d_weight | |
| log = {"loss_d": loss_d.item(), | |
| "logits_real": logits_real.mean().item(), | |
| "logits_fake": logits_fake.mean().item() | |
| } | |
| return loss, log |