File size: 7,159 Bytes
199c8cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb25e1
199c8cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# ------------------------------------------------------------------------------
# OptVQ: Preventing Local Pitfalls in Vector Quantization via Optimal Transport
# Copyright (c) 2024 Borui Zhang. All Rights Reserved.
# Licensed under the MIT License [see LICENSE for details]
# ------------------------------------------------------------------------------
# Modified from [thuanz123/enhancing-transformers](https://github.com/thuanz123/enhancing-transformers)
# Copyright (c) 2022 Thuan H. Nguyen. All Rights Reserved.
# ------------------------------------------------------------------------------
# Modified from [CompVis/taming-transformers](https://github.com/CompVis/taming-transformers)
# Copyright (c) 2020 Patrick Esser and Robin Rombach and Björn Ommer. All Rights Reserved.
# ------------------------------------------------------------------------------

import torch
import torch.nn as nn
import torch.nn.functional as F
import lpips

from revq.models.discriminator import NLayerDiscriminator, weights_init

class DummyLoss(nn.Module):
    def __init__(self):
        super().__init__()


def hinge_d_loss(logits_real, logits_fake):
    loss_real = torch.mean(F.relu(1. - logits_real))
    loss_fake = torch.mean(F.relu(1. + logits_fake))
    d_loss = 0.5 * (loss_real + loss_fake)
    return d_loss


def vanilla_d_loss(logits_real, logits_fake):
    d_loss = 0.5 * (
        torch.mean(torch.nn.functional.softplus(-logits_real)) +
        torch.mean(torch.nn.functional.softplus(logits_fake)))
    return d_loss


class AELossWithDisc(nn.Module):
    def __init__(self, 
                 disc_start, 
                 pixelloss_weight=1.0,
                 disc_in_channels=3, 
                 disc_num_layers=3, 
                 use_actnorm=False, 
                 disc_ndf=64, 
                 disc_conditional=False,
                 disc_loss="hinge",
                 loss_l1_weight: float = 1.0,
                 loss_l2_weight: float = 1.0,
                 loss_p_weight: float = 1.0,
                 loss_q_weight: float = 1.0,
                 loss_g_weight: float = 1.0,
                 loss_d_weight: float = 1.0
        ):
        super(AELossWithDisc, self).__init__()
        assert disc_loss in ["hinge", "vanilla"]
        
        self.pixel_weight = pixelloss_weight
        self.perceptual_loss = lpips.LPIPS(net="vgg", verbose=False).eval()

        self.loss_l1_weight = loss_l1_weight
        self.loss_l2_weight = loss_l2_weight
        self.loss_p_weight = loss_p_weight
        self.loss_q_weight = loss_q_weight
        self.loss_g_weight = loss_g_weight
        self.loss_d_weight = loss_d_weight

        self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
                                                 n_layers=disc_num_layers,
                                                 use_actnorm=use_actnorm,
                                                 ndf=disc_ndf
                                                 ).apply(weights_init)
        self.discriminator_iter_start = disc_start
        if disc_loss == "hinge":
            self.disc_loss = hinge_d_loss
        elif disc_loss == "vanilla":
            self.disc_loss = vanilla_d_loss
        else:
            raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
        print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")

        self.disc_conditional = disc_conditional

    def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
        nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
        g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]

        g_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
        g_weight = torch.clamp(g_weight, 0.0, 1e4).detach()
        g_weight = g_weight * self.loss_g_weight
        
        # detection nan
        if torch.isnan(g_weight).any():
            g_weight = torch.tensor(0.0, device=g_weight.device)
        return g_weight

    @torch.autocast(device_type="cuda", enabled=False)
    def forward(self, codebook_loss, inputs, reconstructions, mode, last_layer=None, cond=None, global_step=0):
        x = inputs.contiguous().float()
        x_rec = reconstructions.contiguous().float()

        # compute q loss
        loss_q = codebook_loss.mean()

        # compute l1 loss
        loss_l1 = (x_rec - x).abs().mean() if self.loss_l1_weight > 0.0 else torch.tensor(0.0, device=x.device)

        # compute l2 loss
        loss_l2 = (x_rec - x).pow(2).mean() if self.loss_l2_weight > 0.0 else torch.tensor(0.0, device=x.device)

        # compute perceptual loss
        loss_p = self.perceptual_loss(x, x_rec).mean() if self.loss_p_weight > 0.0 else torch.tensor(0.0, device=x.device)

        # intigrate reconstruction loss
        loss_rec = loss_l1 * self.loss_l1_weight + \
                   loss_l2 * self.loss_l2_weight + \
                   loss_p * self.loss_p_weight

        # setup the factor_disc
        if global_step < self.discriminator_iter_start:
            factor_disc = 0.0
        else:
            factor_disc = 1.0

        # now the GAN part
        if mode == 0:
            # generator update
            if cond is None:
                assert not self.disc_conditional
                logits_fake = self.discriminator(x_rec)
            else:
                assert self.disc_conditional
                logits_fake = self.discriminator(torch.cat((x_rec, cond), dim=1))

            # compute g loss
            loss_g = - logits_fake.mean()

            try:
                loss_g_weight = self.calculate_adaptive_weight(loss_rec, loss_g, last_layer=last_layer)
            except RuntimeError:
                # assert not self.training
                loss_g_weight = torch.tensor(0.0)

            loss = loss_g * loss_g_weight * factor_disc  + \
                   loss_q * self.loss_q_weight + \
                   loss_rec

            log = {"total_loss": loss.item(),
                   "loss_q": loss_q.item(),
                   "loss_rec": loss_rec.item(),
                   "loss_l1": loss_l1.item(),
                   "loss_l2": loss_l2.item(),
                   "loss_p": loss_p.item(),
                   "loss_g": loss_g.item(),
                   "loss_g_weight": loss_g_weight.item(),
                   "factor_disc": factor_disc,
            }
            return loss, log

        if mode == 1:
            # second pass for discriminator update
            if cond is None:
                logits_real = self.discriminator(x.detach())
                logits_fake = self.discriminator(x_rec.detach())
            else:
                logits_real = self.discriminator(torch.cat((x.detach(), cond), dim=1))
                logits_fake = self.discriminator(torch.cat((x_rec.detach(), cond), dim=1))

            loss_d = self.disc_loss(logits_real, logits_fake).mean()
            loss = loss_d * self.loss_d_weight

            log = {"loss_d": loss_d.item(),
                   "logits_real": logits_real.mean().item(),
                   "logits_fake": logits_fake.mean().item()
            }
            return loss, log