File size: 7,589 Bytes
922edf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
"""

Multilingual Translation Service for LexAI

==========================================



Quick MVP implementation for hackathon demo

Supports translation between English and Indian regional languages

"""

from typing import Dict, Any, Optional
from googletrans import Translator
import re

class MultilingualService:
    """

    Translate legal content between English and regional languages

    """
    
    # Language codes
    LANGUAGES = {
        'en': 'English',
        'hi': 'Hindi',
        'ta': 'Tamil',
        'te': 'Telugu',
        'bn': 'Bengali',
        'mr': 'Marathi',
        'gu': 'Gujarati',
        'kn': 'Kannada',
        'ml': 'Malayalam',
    }
    
    def __init__(self):
        self.translator = Translator()
        
    def detect_language(self, text: str) -> str:
        """Auto-detect language of input text"""
        try:
            detected = self.translator.detect(text)
            return detected.lang
        except:
            return 'en'
    
    def translate_query(self, text: str, source_lang: str = 'auto', target_lang: str = 'en') -> Dict[str, Any]:
        """

        Translate user query to English for processing

        

        Args:

            text: User query in regional language

            source_lang: Source language code (auto-detect if 'auto')

            target_lang: Target language (default: English)

            

        Returns:

            Dict with translated text and metadata

        """
        try:
            # Auto-detect if needed
            if source_lang == 'auto':
                source_lang = self.detect_language(text)
            
            # Translate
            result = self.translator.translate(text, src=source_lang, dest=target_lang)
            
            return {
                "original_text": text,
                "translated_text": result.text,
                "source_language": source_lang,
                "source_language_name": self.LANGUAGES.get(source_lang, "Unknown"),
                "target_language": target_lang,
                "confidence": 0.95  # Mock confidence for demo
            }
        except Exception as e:
            return {
                "error": str(e),
                "original_text": text,
                "translated_text": text,  # Fallback to original
                "source_language": source_lang,
                "target_language": target_lang
            }
    
    def translate_response(self, text: str, target_lang: str = 'hi') -> Dict[str, Any]:
        """

        Translate AI response to user's preferred language

        

        Args:

            text: AI response in English

            target_lang: User's preferred language

            

        Returns:

            Dict with translated response

        """
        try:
            result = self.translator.translate(text, src='en', dest=target_lang)
            
            return {
                "original_text": text,
                "translated_text": result.text,
                "target_language": target_lang,
                "target_language_name": self.LANGUAGES.get(target_lang, "Unknown"),
            }
        except Exception as e:
            return {
                "error": str(e),
                "original_text": text,
                "translated_text": text,
                "target_language": target_lang
            }
    
    def translate_legal_document(self, text: str, target_lang: str) -> str:
        """Translate legal document preserving structure"""
        try:
            result = self.translator.translate(text, src='en', dest=target_lang)
            return result.text
        except:
            return text
    
    def get_supported_languages(self) -> Dict[str, str]:
        """Return list of supported languages"""
        return self.LANGUAGES
    
    def simplify_legal_text(self, legal_text: str, reading_level: str = 'simple') -> Dict[str, Any]:
        """

        Convert complex legal language to plain language

        

        Args:

            legal_text: Complex legal text

            reading_level: 'simple' or 'intermediate'

            

        Returns:

            Simplified text with explanations

        """
        
        # Legal term mappings (MVP - can be expanded)
        legal_simplifications = {
            r'\binter alia\b': 'among other things',
            r'\bres ipsa loquitur\b': 'the thing speaks for itself',
            r'\bper se\b': 'by itself',
            r'\bpro bono\b': 'for free',
            r'\bhabeas corpus\b': 'produce the person (bring before court)',
            r'\bbail\b': 'temporary release from custody',
            r'\bFIR\b': 'First Information Report (initial police complaint)',
            r'\bIPC\b': 'Indian Penal Code (criminal law)',
            r'\bCrPC\b': 'Criminal Procedure Code (how criminal cases work)',
            r'\bappellant\b': 'person appealing the decision',
            r'\brespondent\b': 'person responding to appeal',
            r'\bpetitioner\b': 'person filing the case',
            r'\bdefendant\b': 'person accused/sued',
            r'\bplaintiff\b': 'person filing complaint',
            r'\bbeyond reasonable doubt\b': 'very certain, no significant doubts',
            r'\bprecedent\b': 'previous similar case decision',
            r'\bjurisdiction\b': 'legal authority/area of court',
            r'\bconviction\b': 'found guilty',
            r'\bacquittal\b': 'found not guilty',
        }
        
        simplified = legal_text
        
        # Apply simplifications
        for pattern, replacement in legal_simplifications.items():
            simplified = re.sub(pattern, replacement, simplified, flags=re.IGNORECASE)
        
        # Extract key points (simple sentence extraction)
        sentences = simplified.split('.')
        key_points = [s.strip() + '.' for s in sentences if len(s.strip()) > 20][:5]
        
        return {
            "original_text": legal_text,
            "simplified_text": simplified,
            "reading_level": reading_level,
            "key_points": key_points,
            "legal_terms_explained": list(legal_simplifications.values())[:10],
            "summary": f"This text explains legal matters in simpler terms. {len(key_points)} key points identified."
        }


# Global instance
_translation_service = None

def get_translation_service() -> MultilingualService:
    """Get or create translation service instance"""
    global _translation_service
    if _translation_service is None:
        _translation_service = MultilingualService()
    return _translation_service


# Quick test
if __name__ == "__main__":
    service = MultilingualService()
    
    # Test translation
    print("Testing translation...")
    result = service.translate_query("मुझे जमानत कैसे मिलेगी?", source_lang='hi', target_lang='en')
    print(f"Hindi → English: {result['translated_text']}")
    
    # Test simplification
    print("\nTesting simplification...")
    legal_text = "The appellant filed a habeas corpus petition seeking bail under Section 302 IPC. The FIR was lodged inter alia alleging murder beyond reasonable doubt."
    simplified = service.simplify_legal_text(legal_text)
    print(f"Original: {legal_text}")
    print(f"Simplified: {simplified['simplified_text']}")
    print(f"Key points: {simplified['key_points']}")