A-I-C-A commited on
Commit
922edf7
·
verified ·
1 Parent(s): 1671452

Upload 10 files

Browse files
Files changed (10) hide show
  1. .dockerignore +31 -0
  2. Dockerfile +45 -0
  3. README.md +32 -11
  4. api.py +604 -0
  5. app.py +14 -0
  6. bias_prediction_engine.py +610 -0
  7. document_generator.py +465 -0
  8. requirements.txt +27 -0
  9. simulation_engine.py +326 -0
  10. translation_service.py +201 -0
.dockerignore ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __pycache__/
2
+ *.py[cod]
3
+ *$py.class
4
+ *.so
5
+ .Python
6
+ env/
7
+ venv/
8
+ ENV/
9
+ .venv
10
+ *.egg-info/
11
+ dist/
12
+ build/
13
+ *.log
14
+ .DS_Store
15
+ .env
16
+ .git/
17
+ .gitignore
18
+ README.md
19
+ DEPLOYMENT.md
20
+ HACKATHON_DEMO.md
21
+ IMPLEMENTATION_SUMMARY.md
22
+ QUICKSTART.md
23
+ QUICK_REFERENCE.md
24
+ *.md
25
+ test_*.py
26
+ client_example.py
27
+ docker-compose.yml
28
+ start.sh
29
+ start.ps1
30
+ start_hackathon.sh
31
+ start_hackathon.ps1
Dockerfile ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Optimized Dockerfile for Hugging Face Spaces
2
+ FROM python:3.10-slim
3
+
4
+ WORKDIR /app
5
+
6
+ # Install system dependencies
7
+ RUN apt-get update && apt-get install -y --no-install-recommends \
8
+ build-essential \
9
+ gcc \
10
+ && rm -rf /var/lib/apt/lists/*
11
+
12
+ # Copy requirements and install Python dependencies
13
+ COPY requirements.txt .
14
+
15
+ # Install dependencies in stages for better caching
16
+ RUN pip install --no-cache-dir --upgrade pip && \
17
+ pip install --no-cache-dir \
18
+ fastapi==0.104.0 \
19
+ uvicorn[standard]==0.24.0 \
20
+ pydantic==2.0.0 \
21
+ python-multipart==0.0.6 \
22
+ python-dotenv==1.0.0 \
23
+ requests==2.31.0 \
24
+ googletrans==4.0.0rc1 \
25
+ langdetect==1.0.9 && \
26
+ pip install --no-cache-dir \
27
+ numpy==1.24.0 \
28
+ pandas==2.0.0 \
29
+ scikit-learn==1.3.0 && \
30
+ pip install --no-cache-dir \
31
+ torch==2.0.0 \
32
+ transformers==4.35.0 \
33
+ sentence-transformers==2.2.0
34
+
35
+ # Copy application code
36
+ COPY . .
37
+
38
+ # Expose port (Hugging Face Spaces uses 7860 by default)
39
+ EXPOSE 7860
40
+
41
+ # Set environment variable for port
42
+ ENV PORT=7860
43
+
44
+ # Start the application
45
+ CMD ["python", "app.py"]
README.md CHANGED
@@ -1,11 +1,32 @@
1
- ---
2
- title: Verdicto Ml
3
- emoji: 🔥
4
- colorFrom: gray
5
- colorTo: purple
6
- sdk: docker
7
- pinned: false
8
- license: apache-2.0
9
- ---
10
-
11
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: LexAI ML Backend
3
+ emoji: ⚖️
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: docker
7
+ app_port: 7860
8
+ pinned: false
9
+ license: apache-2.0
10
+ ---
11
+
12
+ # LexAI ML Backend - Hugging Face Space
13
+
14
+ This Space hosts the complete ML backend for LexAI, providing:
15
+
16
+ - **Bias Detection**: InLegalBERT-powered analysis of legal documents
17
+ - **Outcome Prediction**: AI-driven case outcome forecasting
18
+ - **Multilingual Translation**: Support for 9 Indian languages
19
+ - **Document Generation**: Automated legal document creation
20
+ - **Text Simplification**: Plain language conversion
21
+ - **What-If Simulation**: Scenario analysis for legal cases
22
+
23
+ ## API Documentation
24
+
25
+ Once deployed, visit `/docs` for interactive API documentation.
26
+
27
+ ## Environment Variables
28
+
29
+ No environment variables required - all models are loaded automatically.
30
+
31
+ ## Usage
32
+
api.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Unified FastAPI API for InLegalBERT Analysis & Hackathon Features
3
+ ==================================================================
4
+
5
+ This module provides REST API endpoints for:
6
+ 1. Bias detection and outcome prediction (InLegalBERT)
7
+ 2. Multilingual translation (9 languages)
8
+ 3. Legal document generation (4 types)
9
+ 4. Plain language simplification
10
+ 5. What-if simulation engine
11
+ 6. Sensitivity analysis
12
+
13
+ All features consolidated into a single API on port 8001.
14
+ """
15
+
16
+ from fastapi import FastAPI, HTTPException, BackgroundTasks
17
+ from fastapi.middleware.cors import CORSMiddleware
18
+ from pydantic import BaseModel, Field
19
+ from typing import List, Optional, Dict, Any
20
+ import uvicorn
21
+ from datetime import datetime
22
+
23
+ from bias_prediction_engine import analyze_legal_case, get_model
24
+ from translation_service import get_translation_service
25
+ from document_generator import get_document_generator
26
+ from simulation_engine import get_simulation_engine
27
+
28
+ # ============================================================================
29
+ # FASTAPI APP SETUP
30
+ # ============================================================================
31
+
32
+ app = FastAPI(
33
+ title="LexAI Unified ML API",
34
+ description="Comprehensive legal AI analysis: bias detection, translation, document generation, and simulation",
35
+ version="2.0.0"
36
+ )
37
+
38
+ # CORS configuration
39
+ app.add_middleware(
40
+ CORSMiddleware,
41
+ allow_origins=["*"], # Configure appropriately for production
42
+ allow_credentials=True,
43
+ allow_methods=["*"],
44
+ allow_headers=["*"],
45
+ )
46
+
47
+ # ============================================================================
48
+ # PYDANTIC MODELS (Request/Response Schemas)
49
+ # ============================================================================
50
+
51
+ # --- Bias Analysis Models ---
52
+ class CaseMetadata(BaseModel):
53
+ """Optional metadata for case analysis"""
54
+ case_type: Optional[str] = Field(None, description="Type of case (criminal, civil, bail, etc.)")
55
+ jurisdiction: Optional[str] = Field(None, description="Court jurisdiction")
56
+ year: Optional[int] = Field(None, description="Case year")
57
+
58
+
59
+ class HistoricalCase(BaseModel):
60
+ """Historical case data for systemic bias analysis"""
61
+ outcome: str = Field(..., description="Case outcome (conviction, acquittal, etc.)")
62
+ gender: Optional[str] = Field(None, description="Gender of defendant")
63
+ region: Optional[str] = Field(None, description="Geographic region")
64
+ caste: Optional[str] = Field(None, description="Caste category")
65
+ case_type: Optional[str] = Field(None, description="Type of case")
66
+ year: Optional[int] = Field(None, description="Year of case")
67
+
68
+
69
+ class AnalysisRequest(BaseModel):
70
+ """Main request model for comprehensive analysis"""
71
+ case_text: str = Field(..., description="Legal document/FIR/judgment text", min_length=10)
72
+ rag_summary: Optional[str] = Field(None, description="AI-generated summary for RAG bias detection")
73
+ source_documents: Optional[List[str]] = Field(None, description="Source documents used for RAG")
74
+ historical_cases: Optional[List[HistoricalCase]] = Field(None, description="Historical cases for systemic analysis")
75
+ case_metadata: Optional[CaseMetadata] = Field(None, description="Case metadata")
76
+
77
+
78
+ class DocumentBiasRequest(BaseModel):
79
+ """Request for document-only bias detection"""
80
+ case_text: str = Field(..., description="Legal document text")
81
+ threshold: float = Field(0.15, ge=0.0, le=1.0, description="Bias detection threshold")
82
+
83
+
84
+ class RAGBiasRequest(BaseModel):
85
+ """Request for RAG output bias detection"""
86
+ rag_summary: str = Field(..., description="AI-generated summary")
87
+ source_documents: List[str] = Field(..., description="Source documents")
88
+
89
+
90
+ class SystemicBiasRequest(BaseModel):
91
+ """Request for systemic bias analysis"""
92
+ historical_cases: List[HistoricalCase] = Field(..., description="Historical case data")
93
+
94
+
95
+ class OutcomePredictionRequest(BaseModel):
96
+ """Request for outcome prediction only"""
97
+ case_text: str = Field(..., description="Legal case text")
98
+ case_metadata: Optional[CaseMetadata] = Field(None, description="Optional case metadata")
99
+
100
+
101
+ class AnalysisResponse(BaseModel):
102
+ """Response model for analysis results"""
103
+ status: str
104
+ analysis_id: str
105
+ timestamp: str
106
+ document_bias: Optional[Dict[str, Any]] = None
107
+ rag_bias: Optional[Dict[str, Any]] = None
108
+ systemic_bias: Optional[Dict[str, Any]] = None
109
+ outcome_prediction: Optional[Dict[str, Any]] = None
110
+
111
+
112
+ # --- Translation & Simplification Models ---
113
+ class TranslateRequest(BaseModel):
114
+ text: str = Field(..., description="Text to translate")
115
+ source_lang: str = Field("auto", description="Source language (auto-detect)")
116
+ target_lang: str = Field("en", description="Target language")
117
+
118
+
119
+ class SimplifyRequest(BaseModel):
120
+ legal_text: str = Field(..., description="Complex legal text")
121
+ reading_level: str = Field("simple", description="Reading level (simple/intermediate)")
122
+
123
+
124
+ # --- Document Generation Models ---
125
+ class DocumentGenerateRequest(BaseModel):
126
+ document_type: str = Field(..., description="Type: bail_application, fir_complaint, legal_notice, petition")
127
+ details: Dict[str, Any] = Field(..., description="Document details")
128
+
129
+
130
+ # --- Simulation Models ---
131
+ class SimulationRequest(BaseModel):
132
+ base_case: Dict[str, Any] = Field(..., description="Original case facts")
133
+ modifications: Dict[str, Any] = Field(..., description="Modifications to test")
134
+
135
+
136
+ class SensitivityRequest(BaseModel):
137
+ case_facts: str = Field(..., description="Case facts for sensitivity analysis")
138
+
139
+
140
+ # ============================================================================
141
+ # ROOT & HEALTH CHECK
142
+ # ============================================================================
143
+
144
+ @app.get("/")
145
+ async def root():
146
+ """API health check and feature overview"""
147
+ return {
148
+ "service": "LexAI Unified ML API",
149
+ "status": "operational",
150
+ "version": "2.0.0",
151
+ "port": 8001,
152
+ "features": {
153
+ "bias_analysis": "InLegalBERT-powered bias detection",
154
+ "outcome_prediction": "Legal case outcome prediction",
155
+ "translation": "9 Indian languages supported",
156
+ "simplification": "Plain language conversion",
157
+ "document_generation": "4 legal document types",
158
+ "simulation": "What-if scenario analysis"
159
+ },
160
+ "timestamp": datetime.now().isoformat()
161
+ }
162
+
163
+
164
+ # ============================================================================
165
+ # BIAS ANALYSIS ENDPOINTS
166
+ # ============================================================================
167
+
168
+ @app.post("/api/v1/analyze/comprehensive", response_model=AnalysisResponse)
169
+ async def comprehensive_analysis(request: AnalysisRequest):
170
+ """
171
+ Perform comprehensive legal case analysis including:
172
+ - Document bias detection
173
+ - RAG output bias detection (if RAG summary provided)
174
+ - Systemic bias analysis (if historical cases provided)
175
+ - Outcome prediction
176
+ """
177
+ try:
178
+ # Convert Pydantic models to dicts
179
+ historical_cases_dict = None
180
+ if request.historical_cases:
181
+ historical_cases_dict = [case.dict() for case in request.historical_cases]
182
+
183
+ case_metadata_dict = None
184
+ if request.case_metadata:
185
+ case_metadata_dict = request.case_metadata.dict()
186
+
187
+ # Run analysis
188
+ results = analyze_legal_case(
189
+ case_text=request.case_text,
190
+ rag_summary=request.rag_summary,
191
+ source_documents=request.source_documents,
192
+ historical_cases=historical_cases_dict,
193
+ case_metadata=case_metadata_dict
194
+ )
195
+
196
+ return results
197
+
198
+ except Exception as e:
199
+ raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")
200
+
201
+
202
+ @app.post("/api/v1/analyze/document-bias")
203
+ async def document_bias_analysis(request: DocumentBiasRequest):
204
+ """Analyze document for textual biases (gender, caste, region, etc.)"""
205
+ try:
206
+ model = get_model()
207
+ results = model.detect_document_bias(request.case_text, request.threshold)
208
+
209
+ return {
210
+ "status": "success",
211
+ "analysis_id": f"doc_bias_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
212
+ "timestamp": datetime.now().isoformat(),
213
+ "results": results
214
+ }
215
+
216
+ except Exception as e:
217
+ raise HTTPException(status_code=500, detail=f"Document bias analysis failed: {str(e)}")
218
+
219
+
220
+ @app.post("/api/v1/analyze/rag-bias")
221
+ async def rag_bias_analysis(request: RAGBiasRequest):
222
+ """Analyze RAG-generated output for tone, interpretive, and selectivity biases"""
223
+ try:
224
+ model = get_model()
225
+ results = model.detect_rag_output_bias(
226
+ request.rag_summary,
227
+ request.source_documents
228
+ )
229
+
230
+ return {
231
+ "status": "success",
232
+ "analysis_id": f"rag_bias_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
233
+ "timestamp": datetime.now().isoformat(),
234
+ "results": results
235
+ }
236
+
237
+ except Exception as e:
238
+ raise HTTPException(status_code=500, detail=f"RAG bias analysis failed: {str(e)}")
239
+
240
+
241
+ @app.post("/api/v1/analyze/systemic-bias")
242
+ async def systemic_bias_analysis(request: SystemicBiasRequest):
243
+ """Analyze historical cases for systemic and statistical biases"""
244
+ try:
245
+ model = get_model()
246
+ historical_cases_dict = [case.dict() for case in request.historical_cases]
247
+ results = model.detect_systemic_bias(historical_cases_dict)
248
+
249
+ return {
250
+ "status": "success",
251
+ "analysis_id": f"systemic_bias_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
252
+ "timestamp": datetime.now().isoformat(),
253
+ "results": results
254
+ }
255
+
256
+ except Exception as e:
257
+ raise HTTPException(status_code=500, detail=f"Systemic bias analysis failed: {str(e)}")
258
+
259
+
260
+ @app.post("/api/v1/predict/outcome")
261
+ async def outcome_prediction(request: OutcomePredictionRequest):
262
+ """Predict legal case outcome with confidence score"""
263
+ try:
264
+ model = get_model()
265
+ case_metadata_dict = None
266
+ if request.case_metadata:
267
+ case_metadata_dict = request.case_metadata.dict()
268
+
269
+ results = model.predict_outcome(request.case_text, case_metadata_dict)
270
+
271
+ return {
272
+ "status": "success",
273
+ "analysis_id": f"prediction_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
274
+ "timestamp": datetime.now().isoformat(),
275
+ "results": results
276
+ }
277
+
278
+ except Exception as e:
279
+ raise HTTPException(status_code=500, detail=f"Outcome prediction failed: {str(e)}")
280
+
281
+
282
+ @app.get("/api/v1/model/info")
283
+ async def model_info():
284
+ """Get information about the loaded model"""
285
+ try:
286
+ model = get_model()
287
+ return {
288
+ "model_name": "InLegalBERT (law-ai/InLegalBERT)",
289
+ "device": str(model.device),
290
+ "bias_types_supported": list(model.bias_keywords.keys()),
291
+ "status": "loaded",
292
+ "timestamp": datetime.now().isoformat()
293
+ }
294
+ except Exception as e:
295
+ raise HTTPException(status_code=500, detail=f"Model info retrieval failed: {str(e)}")
296
+
297
+
298
+ # ============================================================================
299
+ # TRANSLATION ENDPOINTS
300
+ # ============================================================================
301
+
302
+ @app.post("/api/v1/translate/query")
303
+ async def translate_query(request: TranslateRequest):
304
+ """
305
+ Translate user query to English for processing
306
+
307
+ **Supports**: Hindi, Tamil, Telugu, Bengali, Marathi, Gujarati, Kannada, Malayalam
308
+ """
309
+ try:
310
+ service = get_translation_service()
311
+ result = service.translate_query(
312
+ request.text,
313
+ request.source_lang,
314
+ request.target_lang
315
+ )
316
+
317
+ return {
318
+ "status": "success",
319
+ "translation": result,
320
+ "timestamp": datetime.now().isoformat()
321
+ }
322
+ except Exception as e:
323
+ raise HTTPException(status_code=500, detail=str(e))
324
+
325
+
326
+ @app.post("/api/v1/translate/response")
327
+ async def translate_response(request: TranslateRequest):
328
+ """Translate AI response to user's language"""
329
+ try:
330
+ service = get_translation_service()
331
+ result = service.translate_response(
332
+ request.text,
333
+ request.target_lang
334
+ )
335
+
336
+ return {
337
+ "status": "success",
338
+ "translation": result,
339
+ "timestamp": datetime.now().isoformat()
340
+ }
341
+ except Exception as e:
342
+ raise HTTPException(status_code=500, detail=str(e))
343
+
344
+
345
+ @app.get("/api/v1/languages")
346
+ async def get_supported_languages():
347
+ """Get list of supported languages"""
348
+ service = get_translation_service()
349
+ return {
350
+ "languages": service.get_supported_languages(),
351
+ "total": len(service.get_supported_languages())
352
+ }
353
+
354
+
355
+ # ============================================================================
356
+ # SIMPLIFICATION ENDPOINTS
357
+ # ============================================================================
358
+
359
+ @app.post("/api/v1/simplify")
360
+ async def simplify_legal_text(request: SimplifyRequest):
361
+ """
362
+ Convert complex legal language to plain language
363
+
364
+ **Perfect for citizens!**
365
+ """
366
+ try:
367
+ service = get_translation_service()
368
+ result = service.simplify_legal_text(
369
+ request.legal_text,
370
+ request.reading_level
371
+ )
372
+
373
+ return {
374
+ "status": "success",
375
+ "simplification": result,
376
+ "timestamp": datetime.now().isoformat()
377
+ }
378
+ except Exception as e:
379
+ raise HTTPException(status_code=500, detail=str(e))
380
+
381
+
382
+ # ============================================================================
383
+ # DOCUMENT GENERATION ENDPOINTS
384
+ # ============================================================================
385
+
386
+ @app.post("/api/v1/generate/document")
387
+ async def generate_document(request: DocumentGenerateRequest):
388
+ """
389
+ Generate legal documents from templates
390
+
391
+ **Available Types:**
392
+ - `bail_application`: Bail application under CrPC
393
+ - `fir_complaint`: FIR/Complaint for police
394
+ - `legal_notice`: Legal notice
395
+ - `petition`: Court petition
396
+ """
397
+ try:
398
+ generator = get_document_generator()
399
+
400
+ if request.document_type == 'bail_application':
401
+ result = generator.generate_bail_application(request.details)
402
+ elif request.document_type == 'fir_complaint':
403
+ result = generator.generate_fir(request.details)
404
+ elif request.document_type == 'legal_notice':
405
+ result = generator.generate_legal_notice(request.details)
406
+ elif request.document_type == 'petition':
407
+ result = generator.generate_petition(request.details)
408
+ else:
409
+ raise HTTPException(
410
+ status_code=400,
411
+ detail=f"Unknown document type: {request.document_type}"
412
+ )
413
+
414
+ return {
415
+ "status": "success",
416
+ "document": result,
417
+ "timestamp": datetime.now().isoformat()
418
+ }
419
+ except Exception as e:
420
+ raise HTTPException(status_code=500, detail=str(e))
421
+
422
+
423
+ @app.get("/api/v1/templates")
424
+ async def get_templates():
425
+ """Get list of available document templates"""
426
+ generator = get_document_generator()
427
+ return {
428
+ "templates": generator.get_template_list(),
429
+ "total": len(generator.get_template_list())
430
+ }
431
+
432
+
433
+ # ============================================================================
434
+ # SIMULATION ENDPOINTS
435
+ # ============================================================================
436
+
437
+ @app.post("/api/v1/simulate/outcome")
438
+ async def simulate_outcome(request: SimulationRequest):
439
+ """
440
+ What-If Simulation: See how case facts affect outcomes
441
+
442
+ **Modifications Available:**
443
+ - `remove_prior_conviction`: Remove criminal history
444
+ - `add_strong_alibi`: Add alibi evidence
445
+ - `improve_witness_credibility`: Enhance witness reliability
446
+ - `add_mitigating_factors`: Add favorable circumstances
447
+ - `reduce_flight_risk`: Show community ties
448
+ - `enhance_evidence`: Strengthen evidence quality
449
+ """
450
+ try:
451
+ engine = get_simulation_engine()
452
+ result = engine.simulate_outcome(
453
+ request.base_case,
454
+ request.modifications
455
+ )
456
+
457
+ return {
458
+ "status": "success",
459
+ "simulation": result,
460
+ "timestamp": datetime.now().isoformat()
461
+ }
462
+ except Exception as e:
463
+ raise HTTPException(status_code=500, detail=str(e))
464
+
465
+
466
+ @app.post("/api/v1/simulate/sensitivity")
467
+ async def sensitivity_analysis(request: SensitivityRequest):
468
+ """
469
+ Sensitivity Analysis: Test impact of each factor independently
470
+
471
+ Shows which factors have the most influence on case outcome
472
+ """
473
+ try:
474
+ engine = get_simulation_engine()
475
+ result = engine.sensitivity_analysis(request.case_facts)
476
+
477
+ return {
478
+ "status": "success",
479
+ "sensitivity": result,
480
+ "timestamp": datetime.now().isoformat()
481
+ }
482
+ except Exception as e:
483
+ raise HTTPException(status_code=500, detail=str(e))
484
+
485
+
486
+ # ============================================================================
487
+ # DEMO ENDPOINT
488
+ # ============================================================================
489
+
490
+ @app.get("/api/v1/demo/complete")
491
+ async def complete_demo():
492
+ """
493
+ Complete feature demonstration
494
+
495
+ Shows all capabilities in one response
496
+ """
497
+
498
+ # 1. Translation
499
+ translation_service = get_translation_service()
500
+ translation_demo = translation_service.translate_query(
501
+ "मुझे जमानत चाहिए",
502
+ "hi",
503
+ "en"
504
+ )
505
+
506
+ # 2. Simplification
507
+ simplification_demo = translation_service.simplify_legal_text(
508
+ "The appellant filed a habeas corpus petition under Article 226.",
509
+ "simple"
510
+ )
511
+
512
+ # 3. Document Generation
513
+ doc_generator = get_document_generator()
514
+ doc_demo = doc_generator.generate_bail_application({
515
+ 'applicant_name': 'Demo User',
516
+ 'state': 'Demo State',
517
+ 'first_time_offender': True
518
+ })
519
+
520
+ # 4. Simulation
521
+ sim_engine = get_simulation_engine()
522
+ sim_demo = sim_engine.simulate_outcome(
523
+ {'facts': 'Accused has prior conviction. Witnesses unreliable.'},
524
+ {'remove_prior_conviction': True, 'improve_witness_credibility': True}
525
+ )
526
+
527
+ return {
528
+ "status": "success",
529
+ "demo_features": {
530
+ "1_translation": {
531
+ "feature": "Multilingual Support",
532
+ "input": "मुझे जमानत चाहिए (Hindi)",
533
+ "output": translation_demo['translated_text'],
534
+ "languages_supported": 9
535
+ },
536
+ "2_simplification": {
537
+ "feature": "Plain Language Conversion",
538
+ "original": "habeas corpus petition under Article 226",
539
+ "simplified": simplification_demo['simplified_text'][:100] + "...",
540
+ "reading_level": "Grade 8"
541
+ },
542
+ "3_document_generation": {
543
+ "feature": "Legal Document Generator",
544
+ "document_type": "Bail Application",
545
+ "length": len(doc_demo['content']),
546
+ "editable": doc_demo['editable'],
547
+ "preview": doc_demo['content'][:300] + "..."
548
+ },
549
+ "4_simulation": {
550
+ "feature": "What-If Simulation",
551
+ "base_outcome": sim_demo['base_case']['prediction']['predictedOutcome'],
552
+ "modified_outcome": sim_demo['modified_case']['prediction']['predictedOutcome'],
553
+ "outcome_changed": sim_demo['impact_analysis']['outcome_changed'],
554
+ "confidence_change": f"{sim_demo['impact_analysis']['confidence_change_percent']}%"
555
+ }
556
+ },
557
+ "total_features_demonstrated": 4,
558
+ "ai_models_used": [
559
+ "InLegalBERT (Bias Detection)",
560
+ "Google Translate (Multilingual)",
561
+ "Template-based Document Generation",
562
+ "Simulation Engine"
563
+ ],
564
+ "timestamp": datetime.now().isoformat()
565
+ }
566
+
567
+
568
+ # ============================================================================
569
+ # STARTUP EVENT
570
+ # ============================================================================
571
+
572
+ @app.on_event("startup")
573
+ async def startup_event():
574
+ """Initialize all services on startup"""
575
+ print("=" * 70)
576
+ print("🚀 LEXAI UNIFIED ML API")
577
+ print("=" * 70)
578
+ print("✅ InLegalBERT Model: Loading...")
579
+ get_model()
580
+ print("✅ InLegalBERT Model: Ready")
581
+ print("✅ Translation Service: Ready (9 languages)")
582
+ print("✅ Document Generator: Ready (4 templates)")
583
+ print("✅ Simplification: Ready")
584
+ print("✅ Simulation Engine: Ready")
585
+ print("=" * 70)
586
+ print("📍 API Docs: http://localhost:8001/docs")
587
+ print("🎯 Demo Endpoint: http://localhost:8001/api/v1/demo/complete")
588
+ print("=" * 70)
589
+
590
+
591
+ # ============================================================================
592
+ # MAIN ENTRY POINT
593
+ # ============================================================================
594
+
595
+ if __name__ == "__main__":
596
+ import os
597
+ port = int(os.environ.get("PORT", 8001))
598
+ uvicorn.run(
599
+ "api:app",
600
+ host="0.0.0.0",
601
+ port=port,
602
+ reload=False,
603
+ log_level="info"
604
+ )
app.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Hugging Face Spaces entry point
2
+ import os
3
+ from api import app
4
+
5
+ # This file is used by Hugging Face Spaces to start the application
6
+ if __name__ == "__main__":
7
+ import uvicorn
8
+ port = int(os.environ.get("PORT", 7860)) # HF Spaces default port
9
+ uvicorn.run(
10
+ app,
11
+ host="0.0.0.0",
12
+ port=port,
13
+ log_level="info"
14
+ )
bias_prediction_engine.py ADDED
@@ -0,0 +1,610 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Bias Detection and Outcome Prediction Engine using InLegalBERT
3
+ ================================================================
4
+
5
+ This module provides:
6
+ 1. Document/Text bias detection (gender, region, caste, etc.)
7
+ 2. RAG output bias detection (tone, interpretive bias)
8
+ 3. Systemic/Statistical bias analysis
9
+ 4. Legal outcome prediction with confidence scores
10
+
11
+ Model: InLegalBERT (Hugging Face pretrained for Indian legal cases)
12
+ """
13
+
14
+ import torch
15
+ import numpy as np
16
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel
17
+ from typing import Dict, List, Any, Optional, Union
18
+ import re
19
+ from collections import Counter
20
+ import json
21
+ from datetime import datetime
22
+ import warnings
23
+ warnings.filterwarnings('ignore')
24
+
25
+ # ============================================================================
26
+ # MODEL INITIALIZATION
27
+ # ============================================================================
28
+
29
+ class InLegalBERTEngine:
30
+ """
31
+ Main engine for bias detection and outcome prediction using InLegalBERT
32
+ """
33
+
34
+ def __init__(self, model_name: str = "law-ai/InLegalBERT"):
35
+ """
36
+ Initialize the InLegalBERT model and tokenizer
37
+
38
+ Args:
39
+ model_name: HuggingFace model identifier
40
+ """
41
+ print(f"Loading InLegalBERT model: {model_name}")
42
+
43
+ # Load tokenizer and base model for embeddings
44
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
45
+ self.base_model = AutoModel.from_pretrained(model_name)
46
+
47
+ # Set device
48
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
49
+ self.base_model.to(self.device)
50
+ self.base_model.eval()
51
+
52
+ # Bias detection keywords (Indian legal context)
53
+ self.bias_keywords = {
54
+ 'gender': [
55
+ 'woman', 'women', 'girl', 'female', 'lady', 'wife', 'mother',
56
+ 'man', 'men', 'boy', 'male', 'husband', 'father', 'manhood', 'womanhood'
57
+ ],
58
+ 'caste': [
59
+ 'scheduled caste', 'sc', 'st', 'scheduled tribe', 'obc', 'backward class',
60
+ 'dalit', 'brahmin', 'upper caste', 'lower caste', 'caste', 'jati'
61
+ ],
62
+ 'religion': [
63
+ 'hindu', 'muslim', 'christian', 'sikh', 'buddhist', 'jain',
64
+ 'religious', 'communal', 'minority', 'majority community'
65
+ ],
66
+ 'region': [
67
+ 'north', 'south', 'east', 'west', 'rural', 'urban', 'tribal',
68
+ 'metropolitan', 'village', 'city', 'state', 'region'
69
+ ],
70
+ 'socioeconomic': [
71
+ 'poor', 'rich', 'wealthy', 'poverty', 'income', 'economically',
72
+ 'below poverty line', 'bpl', 'weaker section', 'privileged'
73
+ ],
74
+ 'age': [
75
+ 'minor', 'juvenile', 'child', 'elderly', 'senior citizen', 'youth',
76
+ 'old', 'young', 'aged'
77
+ ]
78
+ }
79
+
80
+ print(f"Model loaded successfully on {self.device}")
81
+
82
+ # ========================================================================
83
+ # UTILITY FUNCTIONS
84
+ # ========================================================================
85
+
86
+ def get_embeddings(self, text: str) -> torch.Tensor:
87
+ """
88
+ Get BERT embeddings for input text
89
+
90
+ Args:
91
+ text: Input text string
92
+
93
+ Returns:
94
+ torch.Tensor: Embedding vector
95
+ """
96
+ # Tokenize
97
+ inputs = self.tokenizer(
98
+ text,
99
+ return_tensors="pt",
100
+ truncation=True,
101
+ max_length=512,
102
+ padding=True
103
+ ).to(self.device)
104
+
105
+ # Get embeddings
106
+ with torch.no_grad():
107
+ outputs = self.base_model(**inputs)
108
+ # Use CLS token embedding (first token)
109
+ embeddings = outputs.last_hidden_state[:, 0, :]
110
+
111
+ return embeddings
112
+
113
+ def compute_bias_score(self, text: str, bias_type: str) -> float:
114
+ """
115
+ Compute bias score for a specific bias type using keyword frequency
116
+ and contextual analysis
117
+
118
+ Args:
119
+ text: Input text
120
+ bias_type: Type of bias (gender, caste, etc.)
121
+
122
+ Returns:
123
+ float: Bias score between 0 and 1
124
+ """
125
+ text_lower = text.lower()
126
+ keywords = self.bias_keywords.get(bias_type, [])
127
+
128
+ # Count keyword occurrences
129
+ keyword_count = sum(text_lower.count(keyword) for keyword in keywords)
130
+
131
+ # Normalize by text length (words)
132
+ word_count = len(text.split())
133
+ if word_count == 0:
134
+ return 0.0
135
+
136
+ # Calculate frequency-based score
137
+ frequency_score = min(keyword_count / word_count * 10, 1.0)
138
+
139
+ # Get contextual score using embeddings (simplified)
140
+ # In production, use a fine-tuned classifier
141
+ contextual_score = frequency_score * 0.8 # Simplified
142
+
143
+ return round(contextual_score, 3)
144
+
145
+ # ========================================================================
146
+ # 1. DOCUMENT/TEXT BIAS DETECTION
147
+ # ========================================================================
148
+
149
+ def detect_document_bias(self, text: str, threshold: float = 0.15) -> Dict[str, Any]:
150
+ """
151
+ Detect various biases in legal documents/FIRs/judgments
152
+
153
+ Args:
154
+ text: Legal document text
155
+ threshold: Minimum score to flag a bias (default 0.15)
156
+
157
+ Returns:
158
+ Dict containing bias flags and detailed scores
159
+ """
160
+ bias_scores = {}
161
+ bias_flags = []
162
+
163
+ # Analyze each bias type
164
+ for bias_type in self.bias_keywords.keys():
165
+ score = self.compute_bias_score(text, bias_type)
166
+ bias_scores[bias_type] = score
167
+
168
+ if score >= threshold:
169
+ bias_flags.append(bias_type)
170
+
171
+ # Determine severity levels
172
+ bias_details = []
173
+ for bias_type, score in bias_scores.items():
174
+ if score >= threshold:
175
+ severity = "high" if score >= 0.4 else "medium" if score >= 0.25 else "low"
176
+ bias_details.append({
177
+ "type": bias_type,
178
+ "severity": severity,
179
+ "score": score,
180
+ "description": f"{bias_type.capitalize()} bias detected based on keyword analysis and context"
181
+ })
182
+
183
+ return {
184
+ "biasFlags_text": bias_flags,
185
+ "bias_scores": bias_scores,
186
+ "bias_details": bias_details,
187
+ "overall_bias_score": round(np.mean(list(bias_scores.values())), 3),
188
+ "analysis_timestamp": datetime.now().isoformat()
189
+ }
190
+
191
+ # ========================================================================
192
+ # 2. RAG OUTPUT BIAS DETECTION
193
+ # ========================================================================
194
+
195
+ def detect_rag_output_bias(self,
196
+ rag_summary: str,
197
+ source_documents: List[str]) -> Dict[str, Any]:
198
+ """
199
+ Detect bias in AI-generated RAG summaries/reasoning
200
+
201
+ Args:
202
+ rag_summary: AI-generated summary or reasoning
203
+ source_documents: Original source documents used for RAG
204
+
205
+ Returns:
206
+ Dict containing RAG-specific bias flags
207
+ """
208
+ bias_flags = []
209
+ bias_details = []
210
+
211
+ # Get embeddings
212
+ summary_emb = self.get_embeddings(rag_summary)
213
+ source_embs = [self.get_embeddings(doc) for doc in source_documents[:5]] # Limit to 5
214
+
215
+ # 1. TONE BIAS - Check if summary tone differs from sources
216
+ if source_embs:
217
+ avg_source_emb = torch.mean(torch.stack(source_embs), dim=0)
218
+ # Cosine similarity
219
+ similarity = torch.nn.functional.cosine_similarity(summary_emb, avg_source_emb)
220
+
221
+ if similarity < 0.7: # Low similarity indicates tone shift
222
+ bias_flags.append("tone_bias")
223
+ bias_details.append({
224
+ "type": "tone_bias",
225
+ "severity": "medium",
226
+ "score": round(1 - similarity.item(), 3),
227
+ "description": "AI summary tone differs significantly from source documents"
228
+ })
229
+
230
+ # 2. INTERPRETIVE BIAS - Check for subjective language
231
+ subjective_words = [
232
+ 'clearly', 'obviously', 'undoubtedly', 'certainly', 'definitely',
233
+ 'surely', 'apparently', 'seemingly', 'arguably', 'presumably'
234
+ ]
235
+ summary_lower = rag_summary.lower()
236
+ subjective_count = sum(summary_lower.count(word) for word in subjective_words)
237
+
238
+ if subjective_count > 2:
239
+ bias_flags.append("interpretive_bias")
240
+ bias_details.append({
241
+ "type": "interpretive_bias",
242
+ "severity": "medium" if subjective_count > 4 else "low",
243
+ "score": round(min(subjective_count / 10, 1.0), 3),
244
+ "description": f"Summary contains {subjective_count} subjective/interpretive terms"
245
+ })
246
+
247
+ # 3. SELECTIVITY BIAS - Check if summary over-represents certain aspects
248
+ # Count mentions of different legal aspects
249
+ aspects = {
250
+ 'procedural': ['procedure', 'process', 'filing', 'hearing', 'appeal'],
251
+ 'substantive': ['law', 'statute', 'provision', 'section', 'act'],
252
+ 'factual': ['fact', 'evidence', 'witness', 'testimony', 'statement']
253
+ }
254
+
255
+ aspect_counts = {k: sum(summary_lower.count(w) for w in v) for k, v in aspects.items()}
256
+ max_count = max(aspect_counts.values()) if aspect_counts.values() else 1
257
+
258
+ if max_count > 5 and any(count < max_count * 0.3 for count in aspect_counts.values()):
259
+ bias_flags.append("selectivity_bias")
260
+ bias_details.append({
261
+ "type": "selectivity_bias",
262
+ "severity": "low",
263
+ "score": 0.4,
264
+ "description": "Summary may over-emphasize certain legal aspects"
265
+ })
266
+
267
+ return {
268
+ "biasFlags_output": bias_flags,
269
+ "bias_details": bias_details,
270
+ "analysis_timestamp": datetime.now().isoformat()
271
+ }
272
+
273
+ # ========================================================================
274
+ # 3. SYSTEMIC/STATISTICAL BIAS DETECTION
275
+ # ========================================================================
276
+
277
+ def detect_systemic_bias(self,
278
+ historical_cases: List[Dict[str, Any]]) -> Dict[str, Any]:
279
+ """
280
+ Analyze systemic and statistical biases from historical case data
281
+
282
+ Args:
283
+ historical_cases: List of case dictionaries with keys:
284
+ - outcome: str (e.g., "conviction", "acquittal")
285
+ - gender: str (optional)
286
+ - region: str (optional)
287
+ - caste: str (optional)
288
+ - case_type: str
289
+ - year: int
290
+
291
+ Returns:
292
+ Dict containing systemic bias metrics and dashboard data
293
+ """
294
+ if not historical_cases:
295
+ return {"error": "No historical cases provided"}
296
+
297
+ # Initialize analytics
298
+ outcome_by_gender = {}
299
+ outcome_by_region = {}
300
+ outcome_by_caste = {}
301
+ outcome_by_year = {}
302
+
303
+ # Process cases
304
+ for case in historical_cases:
305
+ outcome = case.get('outcome', 'unknown')
306
+
307
+ # Gender analysis
308
+ if 'gender' in case:
309
+ gender = case['gender']
310
+ if gender not in outcome_by_gender:
311
+ outcome_by_gender[gender] = []
312
+ outcome_by_gender[gender].append(outcome)
313
+
314
+ # Region analysis
315
+ if 'region' in case:
316
+ region = case['region']
317
+ if region not in outcome_by_region:
318
+ outcome_by_region[region] = []
319
+ outcome_by_region[region].append(outcome)
320
+
321
+ # Caste analysis
322
+ if 'caste' in case:
323
+ caste = case['caste']
324
+ if caste not in outcome_by_caste:
325
+ outcome_by_caste[caste] = []
326
+ outcome_by_caste[caste].append(outcome)
327
+
328
+ # Temporal analysis
329
+ if 'year' in case:
330
+ year = case['year']
331
+ if year not in outcome_by_year:
332
+ outcome_by_year[year] = []
333
+ outcome_by_year[year].append(outcome)
334
+
335
+ # Calculate disparity metrics
336
+ def calculate_disparity(outcome_dict: Dict) -> Dict:
337
+ """Calculate outcome disparities"""
338
+ disparity_data = {}
339
+ for category, outcomes in outcome_dict.items():
340
+ total = len(outcomes)
341
+ if total > 0:
342
+ conviction_rate = outcomes.count('conviction') / total
343
+ disparity_data[category] = {
344
+ 'total_cases': total,
345
+ 'conviction_rate': round(conviction_rate, 3),
346
+ 'acquittal_rate': round(outcomes.count('acquittal') / total, 3)
347
+ }
348
+ return disparity_data
349
+
350
+ gender_disparity = calculate_disparity(outcome_by_gender)
351
+ region_disparity = calculate_disparity(outcome_by_region)
352
+ caste_disparity = calculate_disparity(outcome_by_caste)
353
+
354
+ # Detect significant disparities
355
+ bias_flags = []
356
+
357
+ if gender_disparity:
358
+ rates = [d['conviction_rate'] for d in gender_disparity.values()]
359
+ if max(rates) - min(rates) > 0.15:
360
+ bias_flags.append("gender_disparity")
361
+
362
+ if region_disparity:
363
+ rates = [d['conviction_rate'] for d in region_disparity.values()]
364
+ if max(rates) - min(rates) > 0.15:
365
+ bias_flags.append("regional_disparity")
366
+
367
+ if caste_disparity:
368
+ rates = [d['conviction_rate'] for d in caste_disparity.values()]
369
+ if max(rates) - min(rates) > 0.15:
370
+ bias_flags.append("caste_disparity")
371
+
372
+ # Generate dashboard-ready data
373
+ dashboard_data = {
374
+ "summary_metrics": {
375
+ "total_cases_analyzed": len(historical_cases),
376
+ "overall_conviction_rate": round(
377
+ sum(1 for c in historical_cases if c.get('outcome') == 'conviction') / len(historical_cases),
378
+ 3
379
+ ),
380
+ "bias_flags_detected": len(bias_flags)
381
+ },
382
+ "gender_analysis": {
383
+ "disparity_data": gender_disparity,
384
+ "chart_data": [
385
+ {"category": k, "conviction_rate": v['conviction_rate']}
386
+ for k, v in gender_disparity.items()
387
+ ]
388
+ },
389
+ "regional_analysis": {
390
+ "disparity_data": region_disparity,
391
+ "chart_data": [
392
+ {"category": k, "conviction_rate": v['conviction_rate']}
393
+ for k, v in region_disparity.items()
394
+ ]
395
+ },
396
+ "caste_analysis": {
397
+ "disparity_data": caste_disparity,
398
+ "chart_data": [
399
+ {"category": k, "conviction_rate": v['conviction_rate']}
400
+ for k, v in caste_disparity.items()
401
+ ]
402
+ },
403
+ "temporal_trends": {
404
+ "by_year": {
405
+ year: {
406
+ 'total': len(outcomes),
407
+ 'conviction_rate': round(outcomes.count('conviction') / len(outcomes), 3)
408
+ }
409
+ for year, outcomes in outcome_by_year.items()
410
+ }
411
+ }
412
+ }
413
+
414
+ return {
415
+ "systemic_bias_flags": bias_flags,
416
+ "biasDashboardData": dashboard_data,
417
+ "analysis_timestamp": datetime.now().isoformat()
418
+ }
419
+
420
+ # ========================================================================
421
+ # 4. OUTCOME PREDICTION
422
+ # ========================================================================
423
+
424
+ def predict_outcome(self,
425
+ case_text: str,
426
+ case_metadata: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
427
+ """
428
+ Predict legal case outcome using InLegalBERT embeddings and heuristics
429
+
430
+ Args:
431
+ case_text: Full case text (FIR, facts, arguments, etc.)
432
+ case_metadata: Optional metadata (case_type, jurisdiction, etc.)
433
+
434
+ Returns:
435
+ Dict containing prediction, confidence, and justification
436
+ """
437
+ # Get text embeddings
438
+ embeddings = self.get_embeddings(case_text)
439
+
440
+ # Keyword-based prediction (simplified - in production use fine-tuned classifier)
441
+ conviction_keywords = [
442
+ 'guilty', 'convicted', 'evidence proves', 'beyond reasonable doubt',
443
+ 'establish', 'proven', 'corroborated', 'substantiated'
444
+ ]
445
+ acquittal_keywords = [
446
+ 'not guilty', 'acquitted', 'benefit of doubt', 'insufficient evidence',
447
+ 'failed to prove', 'contradictory', 'unreliable', 'doubt'
448
+ ]
449
+
450
+ text_lower = case_text.lower()
451
+ conviction_score = sum(text_lower.count(kw) for kw in conviction_keywords)
452
+ acquittal_score = sum(text_lower.count(kw) for kw in acquittal_keywords)
453
+
454
+ # Calculate prediction
455
+ total_score = conviction_score + acquittal_score
456
+ if total_score == 0:
457
+ # No strong indicators, use neutral prediction
458
+ predicted_outcome = "uncertain"
459
+ confidence_score = 0.5
460
+ justification = "Insufficient textual indicators for confident prediction"
461
+ else:
462
+ conviction_prob = conviction_score / total_score
463
+
464
+ if conviction_prob > 0.6:
465
+ predicted_outcome = "conviction"
466
+ confidence_score = round(conviction_prob, 3)
467
+ justification = f"Text analysis shows {conviction_score} conviction indicators vs {acquittal_score} acquittal indicators"
468
+ elif conviction_prob < 0.4:
469
+ predicted_outcome = "acquittal"
470
+ confidence_score = round(1 - conviction_prob, 3)
471
+ justification = f"Text analysis shows {acquittal_score} acquittal indicators vs {conviction_score} conviction indicators"
472
+ else:
473
+ predicted_outcome = "uncertain"
474
+ confidence_score = 0.5
475
+ justification = "Mixed indicators suggest uncertain outcome"
476
+
477
+ # Adjust for metadata if provided
478
+ if case_metadata:
479
+ case_type = case_metadata.get('case_type', '').lower()
480
+
481
+ # Example adjustments (customize based on domain knowledge)
482
+ if 'bail' in case_type:
483
+ if predicted_outcome == "conviction":
484
+ predicted_outcome = "bail_denied"
485
+ justification += "; Bail application context considered"
486
+ elif predicted_outcome == "acquittal":
487
+ predicted_outcome = "bail_granted"
488
+ justification += "; Bail application context considered"
489
+
490
+ # Confidence level categorization
491
+ if confidence_score >= 0.75:
492
+ confidence_level = "high"
493
+ elif confidence_score >= 0.5:
494
+ confidence_level = "medium"
495
+ else:
496
+ confidence_level = "low"
497
+
498
+ return {
499
+ "predictedOutcome": predicted_outcome,
500
+ "confidenceScore": confidence_score,
501
+ "confidenceLevel": confidence_level,
502
+ "justification": justification,
503
+ "embedding_norm": float(torch.norm(embeddings).item()),
504
+ "analysis_timestamp": datetime.now().isoformat()
505
+ }
506
+
507
+ # ============================================================================
508
+ # API INTERFACE FUNCTIONS
509
+ # ============================================================================
510
+
511
+ # Global model instance (loaded once)
512
+ _model_instance = None
513
+
514
+ def get_model() -> InLegalBERTEngine:
515
+ """Get or create model instance (singleton pattern)"""
516
+ global _model_instance
517
+ if _model_instance is None:
518
+ _model_instance = InLegalBERTEngine()
519
+ return _model_instance
520
+
521
+
522
+ def analyze_legal_case(
523
+ case_text: str,
524
+ rag_summary: Optional[str] = None,
525
+ source_documents: Optional[List[str]] = None,
526
+ historical_cases: Optional[List[Dict]] = None,
527
+ case_metadata: Optional[Dict] = None
528
+ ) -> Dict[str, Any]:
529
+ """
530
+ Main API function for comprehensive legal case analysis
531
+
532
+ Args:
533
+ case_text: Legal document/FIR/judgment text
534
+ rag_summary: AI-generated summary (for RAG bias detection)
535
+ source_documents: Source docs used for RAG (for RAG bias detection)
536
+ historical_cases: Historical case data (for systemic bias analysis)
537
+ case_metadata: Case metadata for outcome prediction
538
+
539
+ Returns:
540
+ JSON-serializable dict with all analysis results
541
+ """
542
+ model = get_model()
543
+
544
+ results = {
545
+ "status": "success",
546
+ "analysis_id": f"analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
547
+ "timestamp": datetime.now().isoformat()
548
+ }
549
+
550
+ # 1. Document bias detection
551
+ if case_text:
552
+ results["document_bias"] = model.detect_document_bias(case_text)
553
+
554
+ # 2. RAG output bias detection
555
+ if rag_summary and source_documents:
556
+ results["rag_bias"] = model.detect_rag_output_bias(rag_summary, source_documents)
557
+
558
+ # 3. Systemic bias analysis
559
+ if historical_cases:
560
+ results["systemic_bias"] = model.detect_systemic_bias(historical_cases)
561
+
562
+ # 4. Outcome prediction
563
+ if case_text:
564
+ results["outcome_prediction"] = model.predict_outcome(case_text, case_metadata)
565
+
566
+ return results
567
+
568
+
569
+ # ============================================================================
570
+ # EXAMPLE USAGE
571
+ # ============================================================================
572
+
573
+ if __name__ == "__main__":
574
+ # Example legal case text
575
+ sample_case = """
576
+ The accused, a 35-year-old woman from rural Maharashtra, was charged under
577
+ Section 302 IPC for alleged murder. The prosecution's case relies heavily on
578
+ circumstantial evidence. The witness testimonies are contradictory, and the
579
+ forensic evidence is inconclusive. The accused belongs to a scheduled caste
580
+ community. The defense argues that there is insufficient evidence to establish
581
+ guilt beyond reasonable doubt.
582
+ """
583
+
584
+ # Example RAG summary
585
+ sample_rag_summary = """
586
+ Clearly, the evidence points toward acquittal. The case obviously lacks
587
+ substantial proof of guilt.
588
+ """
589
+
590
+ # Example historical cases
591
+ sample_historical = [
592
+ {"outcome": "conviction", "gender": "male", "region": "urban", "year": 2020},
593
+ {"outcome": "acquittal", "gender": "female", "region": "rural", "year": 2020},
594
+ {"outcome": "conviction", "gender": "male", "region": "urban", "year": 2021},
595
+ {"outcome": "conviction", "gender": "female", "region": "urban", "year": 2021},
596
+ ]
597
+
598
+ # Run comprehensive analysis
599
+ print("Running comprehensive legal analysis...\n")
600
+ results = analyze_legal_case(
601
+ case_text=sample_case,
602
+ rag_summary=sample_rag_summary,
603
+ source_documents=[sample_case],
604
+ historical_cases=sample_historical,
605
+ case_metadata={"case_type": "criminal", "jurisdiction": "Maharashtra"}
606
+ )
607
+
608
+ # Print results
609
+ print(json.dumps(results, indent=2))
610
+
document_generator.py ADDED
@@ -0,0 +1,465 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Legal Document Generator for LexAI
3
+ ==================================
4
+
5
+ Quick MVP for hackathon demo
6
+ Generates bail applications, FIR drafts, and legal notices
7
+ """
8
+
9
+ from typing import Dict, Any, Optional
10
+ from datetime import datetime
11
+ import json
12
+
13
+ class LegalDocumentGenerator:
14
+ """
15
+ Generate legal documents from templates with AI assistance
16
+ """
17
+
18
+ def __init__(self):
19
+ self.templates = self._load_templates()
20
+
21
+ def _load_templates(self) -> Dict[str, str]:
22
+ """Load document templates"""
23
+ return {
24
+ 'bail_application': """
25
+ IN THE COURT OF {court_name}
26
+
27
+ CRIMINAL MISCELLANEOUS APPLICATION NO. _______
28
+
29
+ IN THE MATTER OF:
30
+ {applicant_name} ... Applicant
31
+ (Through Advocate: {advocate_name})
32
+
33
+ VERSUS
34
+
35
+ STATE OF {state} ... Respondent
36
+
37
+ APPLICATION FOR BAIL UNDER SECTION {section}
38
+
39
+ RESPECTFULLY SHOWETH:
40
+
41
+ 1. That the applicant is an accused in FIR No. {fir_number} dated {fir_date} registered at Police Station {police_station} under Sections {charges} of the Indian Penal Code.
42
+
43
+ 2. That the applicant was arrested on {arrest_date} and has been in judicial custody since then.
44
+
45
+ 3. That the applicant is {age} years old, a resident of {address}, and is {occupation} by profession.
46
+
47
+ 4. That the applicant is {family_status} and is the sole bread earner of the family.
48
+
49
+ 5. That the applicant has deep roots in the community and has no criminal antecedents.
50
+
51
+ 6. GROUNDS FOR BAIL:
52
+
53
+ {grounds}
54
+
55
+ 7. That the applicant undertakes to:
56
+ a) Appear before the Court as and when required
57
+ b) Not tamper with evidence or influence witnesses
58
+ c) Not commit any offense while on bail
59
+ d) Furnish personal or surety bond as required
60
+
61
+ 8. That the applicant is willing to comply with any conditions that this Hon'ble Court may deem fit to impose.
62
+
63
+ PRAYER:
64
+
65
+ In view of the above, it is most respectfully prayed that this Hon'ble Court may be pleased to:
66
+
67
+ a) Grant bail to the applicant
68
+ b) Pass any other order as deemed fit in the interest of justice
69
+
70
+ Place: {place}
71
+ Date: {date}
72
+
73
+ (Advocate for Applicant)
74
+ """,
75
+
76
+ 'fir_complaint': """
77
+ FIRST INFORMATION REPORT (FIR)
78
+
79
+ Police Station: {police_station}
80
+ District: {district}
81
+ Date: {date}
82
+ Time: {time}
83
+
84
+ COMPLAINANT DETAILS:
85
+ Name: {complainant_name}
86
+ Father's/Husband's Name: {father_husband_name}
87
+ Address: {address}
88
+ Contact Number: {phone}
89
+ Email: {email}
90
+
91
+ ACCUSED DETAILS:
92
+ {accused_details}
93
+
94
+ DETAILS OF INCIDENT:
95
+
96
+ 1. Date and Time of Incident: {incident_date} at approximately {incident_time}
97
+
98
+ 2. Place of Incident: {incident_place}
99
+
100
+ 3. Description of Incident:
101
+
102
+ {incident_description}
103
+
104
+ 4. Details of Loss/Injury (if any):
105
+
106
+ {loss_details}
107
+
108
+ 5. Witnesses (if any):
109
+
110
+ {witnesses}
111
+
112
+ 6. Evidence Available:
113
+
114
+ {evidence}
115
+
116
+ 7. Sections Applicable:
117
+
118
+ Based on the facts narrated above, it appears that offenses under the following sections have been committed:
119
+ {sections_applicable}
120
+
121
+ 8. I hereby declare that the above information is true to the best of my knowledge and belief.
122
+
123
+ Signature of Complainant: _______________
124
+ Name: {complainant_name}
125
+ Date: {date}
126
+
127
+ [For Official Use Only]
128
+ FIR No.: _____________
129
+ Registered under Sections: _____________
130
+ Investigating Officer: _____________
131
+ """,
132
+
133
+ 'legal_notice': """
134
+ LEGAL NOTICE
135
+
136
+ To,
137
+ {recipient_name}
138
+ {recipient_address}
139
+
140
+ Date: {date}
141
+
142
+ Dear Sir/Madam,
143
+
144
+ SUBJECT: LEGAL NOTICE UNDER {act_section}
145
+
146
+ Under instructions from and on behalf of my client, {client_name}, residing at {client_address}, I hereby serve you with this legal notice for the following reasons:
147
+
148
+ 1. FACTS OF THE CASE:
149
+
150
+ {case_facts}
151
+
152
+ 2. CAUSE OF ACTION:
153
+
154
+ {cause_of_action}
155
+
156
+ 3. LEGAL GROUNDS:
157
+
158
+ The acts/omissions on your part constitute violations under:
159
+ {legal_grounds}
160
+
161
+ 4. RELIEF SOUGHT:
162
+
163
+ My client demands that you:
164
+
165
+ {relief_demanded}
166
+
167
+ 5. NOTICE PERIOD:
168
+
169
+ You are hereby called upon to comply with the above demands within 15 days from the date of receipt of this notice, failing which my client shall be constrained to initiate appropriate legal proceedings against you at your risk as to costs and consequences.
170
+
171
+ This notice is without prejudice to the rights and contentions of my client.
172
+
173
+ Yours faithfully,
174
+
175
+ {advocate_name}
176
+ Advocate for {client_name}
177
+ Address: {advocate_address}
178
+ Contact: {advocate_contact}
179
+ """,
180
+
181
+ 'petition': """
182
+ IN THE {court_name}
183
+
184
+ {petition_type} PETITION NO. _______
185
+
186
+ IN THE MATTER OF:
187
+
188
+ {petitioner_name}
189
+ {petitioner_address}
190
+ ... Petitioner
191
+
192
+ VERSUS
193
+
194
+ {respondent_name}
195
+ {respondent_address}
196
+ ... Respondent
197
+
198
+ PETITION UNDER {under_section}
199
+
200
+ TO,
201
+ THE HON'BLE {judge_title}
202
+
203
+ THE HUMBLE PETITION OF THE PETITIONER ABOVE-NAMED
204
+
205
+ MOST RESPECTFULLY SHOWETH:
206
+
207
+ 1. PARTIES:
208
+
209
+ {parties_description}
210
+
211
+ 2. FACTS:
212
+
213
+ {facts}
214
+
215
+ 3. CAUSE OF ACTION:
216
+
217
+ {cause_of_action}
218
+
219
+ 4. GROUNDS:
220
+
221
+ {grounds}
222
+
223
+ 5. RELIEF:
224
+
225
+ WHEREFORE, in the light of the facts and circumstances stated above, it is most respectfully prayed that this Hon'ble Court may be pleased to:
226
+
227
+ {relief_prayed}
228
+
229
+ And pass such other and further orders as this Hon'ble Court may deem fit and proper in the interest of justice.
230
+
231
+ Place: {place}
232
+ Date: {date}
233
+
234
+ PETITIONER/ADVOCATE
235
+ """
236
+ }
237
+
238
+ def generate_bail_application(self, details: Dict[str, Any]) -> Dict[str, str]:
239
+ """
240
+ Generate bail application
241
+
242
+ Args:
243
+ details: Dict containing applicant details, charges, grounds, etc.
244
+ """
245
+ template = self.templates['bail_application']
246
+
247
+ # Set defaults
248
+ doc_details = {
249
+ 'court_name': details.get('court_name', 'SESSIONS JUDGE'),
250
+ 'applicant_name': details.get('applicant_name', '[APPLICANT NAME]'),
251
+ 'advocate_name': details.get('advocate_name', '[ADVOCATE NAME]'),
252
+ 'state': details.get('state', '[STATE]'),
253
+ 'section': details.get('section', '439 Cr.P.C.'),
254
+ 'fir_number': details.get('fir_number', '[FIR NO.]'),
255
+ 'fir_date': details.get('fir_date', '[DATE]'),
256
+ 'police_station': details.get('police_station', '[POLICE STATION]'),
257
+ 'charges': details.get('charges', '[IPC SECTIONS]'),
258
+ 'arrest_date': details.get('arrest_date', '[ARREST DATE]'),
259
+ 'age': details.get('age', '[AGE]'),
260
+ 'address': details.get('address', '[ADDRESS]'),
261
+ 'occupation': details.get('occupation', 'engaged in lawful occupation'),
262
+ 'family_status': details.get('family_status', 'having family responsibilities'),
263
+ 'grounds': self._generate_bail_grounds(details),
264
+ 'place': details.get('place', '[PLACE]'),
265
+ 'date': details.get('date', datetime.now().strftime('%d.%m.%Y')),
266
+ }
267
+
268
+ document = template.format(**doc_details)
269
+
270
+ return {
271
+ 'document_type': 'bail_application',
272
+ 'content': document,
273
+ 'generated_at': datetime.now().isoformat(),
274
+ 'editable': True,
275
+ 'format': 'text/plain'
276
+ }
277
+
278
+ def _generate_bail_grounds(self, details: Dict[str, Any]) -> str:
279
+ """Auto-generate bail grounds based on details"""
280
+ grounds = []
281
+
282
+ if details.get('first_time_offender', True):
283
+ grounds.append("a) The applicant is a first-time offender with no criminal antecedents.")
284
+
285
+ if details.get('cooperating', True):
286
+ grounds.append("b) The applicant has been fully cooperating with the investigation.")
287
+
288
+ if details.get('weak_evidence', False):
289
+ grounds.append("c) The evidence against the applicant is weak and based on circumstantial factors.")
290
+
291
+ if details.get('no_flight_risk', True):
292
+ grounds.append("d) The applicant has deep roots in the community and there is no risk of absconding.")
293
+
294
+ if details.get('medical_grounds', False):
295
+ grounds.append("e) The applicant requires medical attention which cannot be adequately provided in custody.")
296
+
297
+ grounds.append("f) The applicant's continued detention is not necessary for the purpose of investigation.")
298
+ grounds.append("g) The applicant is willing to abide by any conditions imposed by this Hon'ble Court.")
299
+
300
+ return '\n '.join(grounds)
301
+
302
+ def generate_fir(self, details: Dict[str, Any]) -> Dict[str, str]:
303
+ """Generate FIR/Complaint"""
304
+ template = self.templates['fir_complaint']
305
+
306
+ doc_details = {
307
+ 'police_station': details.get('police_station', '[POLICE STATION]'),
308
+ 'district': details.get('district', '[DISTRICT]'),
309
+ 'date': details.get('date', datetime.now().strftime('%d.%m.%Y')),
310
+ 'time': details.get('time', datetime.now().strftime('%H:%M')),
311
+ 'complainant_name': details.get('complainant_name', '[NAME]'),
312
+ 'father_husband_name': details.get('father_husband_name', '[FATHER/HUSBAND NAME]'),
313
+ 'address': details.get('address', '[ADDRESS]'),
314
+ 'phone': details.get('phone', '[PHONE]'),
315
+ 'email': details.get('email', '[EMAIL]'),
316
+ 'accused_details': details.get('accused_details', '[ACCUSED DETAILS]'),
317
+ 'incident_date': details.get('incident_date', '[DATE]'),
318
+ 'incident_time': details.get('incident_time', '[TIME]'),
319
+ 'incident_place': details.get('incident_place', '[PLACE]'),
320
+ 'incident_description': details.get('incident_description', '[DESCRIPTION OF INCIDENT]'),
321
+ 'loss_details': details.get('loss_details', 'N/A'),
322
+ 'witnesses': details.get('witnesses', 'None'),
323
+ 'evidence': details.get('evidence', 'As per investigation'),
324
+ 'sections_applicable': details.get('sections_applicable', '[IPC SECTIONS]'),
325
+ }
326
+
327
+ document = template.format(**doc_details)
328
+
329
+ return {
330
+ 'document_type': 'fir_complaint',
331
+ 'content': document,
332
+ 'generated_at': datetime.now().isoformat(),
333
+ 'editable': True,
334
+ 'format': 'text/plain'
335
+ }
336
+
337
+ def generate_legal_notice(self, details: Dict[str, Any]) -> Dict[str, str]:
338
+ """Generate legal notice"""
339
+ template = self.templates['legal_notice']
340
+
341
+ doc_details = {
342
+ 'date': details.get('date', datetime.now().strftime('%d.%m.%Y')),
343
+ 'recipient_name': details.get('recipient_name', '[RECIPIENT NAME]'),
344
+ 'recipient_address': details.get('recipient_address', '[RECIPIENT ADDRESS]'),
345
+ 'act_section': details.get('act_section', 'RELEVANT PROVISIONS'),
346
+ 'client_name': details.get('client_name', '[CLIENT NAME]'),
347
+ 'client_address': details.get('client_address', '[CLIENT ADDRESS]'),
348
+ 'case_facts': details.get('case_facts', '[FACTS OF THE CASE]'),
349
+ 'cause_of_action': details.get('cause_of_action', '[CAUSE OF ACTION]'),
350
+ 'legal_grounds': details.get('legal_grounds', '[LEGAL VIOLATIONS]'),
351
+ 'relief_demanded': details.get('relief_demanded', '[RELIEF SOUGHT]'),
352
+ 'advocate_name': details.get('advocate_name', '[ADVOCATE NAME]'),
353
+ 'advocate_address': details.get('advocate_address', '[ADVOCATE ADDRESS]'),
354
+ 'advocate_contact': details.get('advocate_contact', '[CONTACT]'),
355
+ }
356
+
357
+ document = template.format(**doc_details)
358
+
359
+ return {
360
+ 'document_type': 'legal_notice',
361
+ 'content': document,
362
+ 'generated_at': datetime.now().isoformat(),
363
+ 'editable': True,
364
+ 'format': 'text/plain'
365
+ }
366
+
367
+ def generate_petition(self, details: Dict[str, Any]) -> Dict[str, str]:
368
+ """Generate petition"""
369
+ template = self.templates['petition']
370
+
371
+ doc_details = {
372
+ 'court_name': details.get('court_name', 'HIGH COURT OF [STATE]'),
373
+ 'petition_type': details.get('petition_type', 'WRIT'),
374
+ 'petitioner_name': details.get('petitioner_name', '[PETITIONER]'),
375
+ 'petitioner_address': details.get('petitioner_address', '[ADDRESS]'),
376
+ 'respondent_name': details.get('respondent_name', '[RESPONDENT]'),
377
+ 'respondent_address': details.get('respondent_address', '[ADDRESS]'),
378
+ 'under_section': details.get('under_section', 'ARTICLE 226 OF THE CONSTITUTION'),
379
+ 'judge_title': details.get('judge_title', 'CHIEF JUSTICE AND HIS COMPANION JUDGES'),
380
+ 'parties_description': details.get('parties_description', '[PARTY DETAILS]'),
381
+ 'facts': details.get('facts', '[FACTS]'),
382
+ 'cause_of_action': details.get('cause_of_action', '[CAUSE OF ACTION]'),
383
+ 'grounds': details.get('grounds', '[GROUNDS]'),
384
+ 'relief_prayed': details.get('relief_prayed', '[RELIEF PRAYED]'),
385
+ 'place': details.get('place', '[PLACE]'),
386
+ 'date': details.get('date', datetime.now().strftime('%d.%m.%Y')),
387
+ }
388
+
389
+ document = template.format(**doc_details)
390
+
391
+ return {
392
+ 'document_type': 'petition',
393
+ 'content': document,
394
+ 'generated_at': datetime.now().isoformat(),
395
+ 'editable': True,
396
+ 'format': 'text/plain'
397
+ }
398
+
399
+ def get_template_list(self) -> list:
400
+ """Get list of available templates"""
401
+ return [
402
+ {
403
+ 'id': 'bail_application',
404
+ 'name': 'Bail Application',
405
+ 'description': 'Application for bail under CrPC Section 439',
406
+ 'category': 'Criminal'
407
+ },
408
+ {
409
+ 'id': 'fir_complaint',
410
+ 'name': 'FIR / Complaint',
411
+ 'description': 'First Information Report for filing with police',
412
+ 'category': 'Criminal'
413
+ },
414
+ {
415
+ 'id': 'legal_notice',
416
+ 'name': 'Legal Notice',
417
+ 'description': 'Legal notice under relevant provisions',
418
+ 'category': 'General'
419
+ },
420
+ {
421
+ 'id': 'petition',
422
+ 'name': 'Petition',
423
+ 'description': 'Writ petition or other court petition',
424
+ 'category': 'Civil/Writ'
425
+ }
426
+ ]
427
+
428
+
429
+ # Global instance
430
+ _doc_generator = None
431
+
432
+ def get_document_generator() -> LegalDocumentGenerator:
433
+ """Get or create document generator instance"""
434
+ global _doc_generator
435
+ if _doc_generator is None:
436
+ _doc_generator = LegalDocumentGenerator()
437
+ return _doc_generator
438
+
439
+
440
+ # Test
441
+ if __name__ == "__main__":
442
+ generator = LegalDocumentGenerator()
443
+
444
+ # Test bail application
445
+ print("Generating bail application...")
446
+ bail_details = {
447
+ 'applicant_name': 'Rajesh Kumar',
448
+ 'advocate_name': 'Adv. Priya Sharma',
449
+ 'state': 'Delhi',
450
+ 'fir_number': '123/2024',
451
+ 'fir_date': '15.01.2024',
452
+ 'police_station': 'Connaught Place',
453
+ 'charges': '420, 468 IPC',
454
+ 'arrest_date': '16.01.2024',
455
+ 'age': '35',
456
+ 'address': '123, New Delhi',
457
+ 'first_time_offender': True,
458
+ 'no_flight_risk': True,
459
+ }
460
+
461
+ result = generator.generate_bail_application(bail_details)
462
+ print(result['content'][:500] + "...")
463
+ print(f"\nDocument type: {result['document_type']}")
464
+ print(f"Generated at: {result['generated_at']}")
465
+
requirements.txt ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # InLegalBERT Bias Detection & Outcome Prediction Dependencies
2
+ # ============================================================
3
+
4
+ # Core ML/AI Libraries
5
+ torch>=2.0.0
6
+ transformers>=4.35.0
7
+ sentence-transformers>=2.2.0
8
+
9
+ # API Framework
10
+ fastapi>=0.104.0
11
+ uvicorn[standard]>=0.24.0
12
+ pydantic>=2.0.0
13
+
14
+ # Data Processing
15
+ numpy>=1.24.0
16
+ pandas>=2.0.0
17
+ scikit-learn>=1.3.0
18
+
19
+ # Utilities
20
+ python-multipart>=0.0.6
21
+ python-dotenv>=1.0.0
22
+ requests>=2.31.0
23
+
24
+ # Hackathon Features
25
+ googletrans==4.0.0rc1
26
+ langdetect>=1.0.9
27
+
simulation_engine.py ADDED
@@ -0,0 +1,326 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ What-If Simulation Engine for LexAI
3
+ ===================================
4
+
5
+ Hackathon MVP - Interactive case outcome simulation
6
+ Shows how changes in case facts affect predictions
7
+ """
8
+
9
+ from typing import Dict, Any, List, Optional
10
+ import re
11
+ from bias_prediction_engine import get_model
12
+
13
+ class SimulationEngine:
14
+ """
15
+ Simulate legal case outcomes with modified facts
16
+ """
17
+
18
+ def __init__(self):
19
+ self.ml_model = get_model()
20
+
21
+ # Modifiable factors and their impacts
22
+ self.factor_impacts = {
23
+ 'prior_conviction': {
24
+ 'weight': 0.25,
25
+ 'direction': 'negative',
26
+ 'description': 'Previous criminal record'
27
+ },
28
+ 'witness_credibility': {
29
+ 'weight': 0.20,
30
+ 'direction': 'positive',
31
+ 'description': 'Reliability of witnesses'
32
+ },
33
+ 'evidence_quality': {
34
+ 'weight': 0.30,
35
+ 'direction': 'positive',
36
+ 'description': 'Strength of evidence'
37
+ },
38
+ 'mitigating_factors': {
39
+ 'weight': 0.15,
40
+ 'direction': 'positive',
41
+ 'description': 'Circumstances favoring accused'
42
+ },
43
+ 'flight_risk': {
44
+ 'weight': 0.10,
45
+ 'direction': 'negative',
46
+ 'description': 'Risk of absconding'
47
+ }
48
+ }
49
+
50
+ def simulate_outcome(self,
51
+ base_case: Dict[str, Any],
52
+ modifications: Dict[str, Any]) -> Dict[str, Any]:
53
+ """
54
+ Simulate how case outcome changes with modifications
55
+
56
+ Args:
57
+ base_case: Original case facts
58
+ modifications: Changes to apply
59
+
60
+ Returns:
61
+ Comparison of outcomes
62
+ """
63
+
64
+ # Get base prediction
65
+ base_text = base_case.get('facts', '')
66
+ base_prediction = self.ml_model.predict_outcome(
67
+ base_text,
68
+ base_case.get('metadata', {})
69
+ )
70
+
71
+ # Apply modifications
72
+ modified_text = self._apply_modifications(base_text, modifications)
73
+ modified_prediction = self.ml_model.predict_outcome(
74
+ modified_text,
75
+ base_case.get('metadata', {})
76
+ )
77
+
78
+ # Calculate impact
79
+ impact_analysis = self._analyze_impact(
80
+ base_prediction,
81
+ modified_prediction,
82
+ modifications
83
+ )
84
+
85
+ return {
86
+ 'base_case': {
87
+ 'facts': base_text,
88
+ 'prediction': base_prediction
89
+ },
90
+ 'modified_case': {
91
+ 'facts': modified_text,
92
+ 'prediction': modified_prediction,
93
+ 'changes_applied': list(modifications.keys())
94
+ },
95
+ 'impact_analysis': impact_analysis,
96
+ 'visualization_data': self._generate_viz_data(
97
+ base_prediction,
98
+ modified_prediction
99
+ )
100
+ }
101
+
102
+ def _apply_modifications(self, base_text: str, modifications: Dict[str, Any]) -> str:
103
+ """Apply modifications to case facts"""
104
+ modified = base_text
105
+
106
+ # Remove prior conviction if specified
107
+ if modifications.get('remove_prior_conviction'):
108
+ modified = re.sub(
109
+ r'(prior conviction|criminal record|previous offense).*?\.',
110
+ 'has no prior criminal record.',
111
+ modified,
112
+ flags=re.IGNORECASE
113
+ )
114
+
115
+ # Add strong alibi
116
+ if modifications.get('add_strong_alibi'):
117
+ modified += " The accused has a strong alibi with multiple credible witnesses confirming their presence elsewhere during the incident."
118
+
119
+ # Improve witness credibility
120
+ if modifications.get('improve_witness_credibility'):
121
+ modified = re.sub(
122
+ r'(witness.*?)(contradictory|unreliable|questionable)',
123
+ r'\1credible and consistent',
124
+ modified,
125
+ flags=re.IGNORECASE
126
+ )
127
+
128
+ # Add mitigating factors
129
+ if modifications.get('add_mitigating_factors'):
130
+ mitigating = modifications['add_mitigating_factors']
131
+ modified += f" {mitigating}"
132
+
133
+ # Reduce flight risk
134
+ if modifications.get('reduce_flight_risk'):
135
+ modified += " The accused has deep roots in the community, stable employment, and family responsibilities, eliminating any flight risk."
136
+
137
+ # Enhance evidence quality
138
+ if modifications.get('enhance_evidence'):
139
+ modified = re.sub(
140
+ r'(evidence.*?)(weak|insufficient|circumstantial)',
141
+ r'\1strong and conclusive',
142
+ modified,
143
+ flags=re.IGNORECASE
144
+ )
145
+
146
+ return modified
147
+
148
+ def _analyze_impact(self,
149
+ base_pred: Dict,
150
+ modified_pred: Dict,
151
+ modifications: Dict) -> Dict[str, Any]:
152
+ """Analyze impact of modifications"""
153
+
154
+ confidence_change = modified_pred['confidenceScore'] - base_pred['confidenceScore']
155
+ outcome_changed = base_pred['predictedOutcome'] != modified_pred['predictedOutcome']
156
+
157
+ # Calculate factor contributions
158
+ factor_impacts = []
159
+ for mod_key, mod_value in modifications.items():
160
+ if mod_value: # If modification was applied
161
+ factor_name = mod_key.replace('_', ' ').title()
162
+ estimated_impact = self._estimate_factor_impact(mod_key)
163
+ factor_impacts.append({
164
+ 'factor': factor_name,
165
+ 'estimated_impact': estimated_impact,
166
+ 'direction': 'positive' if estimated_impact > 0 else 'negative'
167
+ })
168
+
169
+ return {
170
+ 'outcome_changed': outcome_changed,
171
+ 'confidence_change': round(confidence_change, 3),
172
+ 'confidence_change_percent': round(confidence_change * 100, 1),
173
+ 'factor_contributions': factor_impacts,
174
+ 'key_factors': self._identify_key_factors(modifications),
175
+ 'recommendation': self._generate_recommendation(
176
+ base_pred,
177
+ modified_pred,
178
+ outcome_changed
179
+ )
180
+ }
181
+
182
+ def _estimate_factor_impact(self, factor_key: str) -> float:
183
+ """Estimate impact of a specific factor"""
184
+ impact_map = {
185
+ 'remove_prior_conviction': 0.25,
186
+ 'add_strong_alibi': 0.30,
187
+ 'improve_witness_credibility': 0.20,
188
+ 'add_mitigating_factors': 0.15,
189
+ 'reduce_flight_risk': 0.10,
190
+ 'enhance_evidence': 0.35,
191
+ }
192
+ return impact_map.get(factor_key, 0.10)
193
+
194
+ def _identify_key_factors(self, modifications: Dict) -> List[str]:
195
+ """Identify most impactful factors"""
196
+ applied_mods = [k for k, v in modifications.items() if v]
197
+ impacts = [(mod, self._estimate_factor_impact(mod)) for mod in applied_mods]
198
+ impacts.sort(key=lambda x: x[1], reverse=True)
199
+ return [mod.replace('_', ' ').title() for mod, _ in impacts[:3]]
200
+
201
+ def _generate_recommendation(self,
202
+ base_pred: Dict,
203
+ modified_pred: Dict,
204
+ outcome_changed: bool) -> str:
205
+ """Generate recommendation based on simulation"""
206
+ if outcome_changed:
207
+ return f"Modifying the specified factors could change the outcome from {base_pred['predictedOutcome']} to {modified_pred['predictedOutcome']}. These factors should be given priority in case preparation."
208
+ else:
209
+ conf_diff = abs(modified_pred['confidenceScore'] - base_pred['confidenceScore'])
210
+ if conf_diff > 0.15:
211
+ return f"While the outcome remains {base_pred['predictedOutcome']}, the confidence has changed by {round(conf_diff * 100, 1)}%. These factors significantly influence case strength."
212
+ else:
213
+ return "The modifications have minimal impact on the outcome. Other factors may be more critical to case success."
214
+
215
+ def _generate_viz_data(self, base_pred: Dict, modified_pred: Dict) -> Dict:
216
+ """Generate data for visualization"""
217
+ return {
218
+ 'confidence_comparison': {
219
+ 'base': round(base_pred['confidenceScore'] * 100, 1),
220
+ 'modified': round(modified_pred['confidenceScore'] * 100, 1),
221
+ 'change': round((modified_pred['confidenceScore'] - base_pred['confidenceScore']) * 100, 1)
222
+ },
223
+ 'outcome_labels': {
224
+ 'base': base_pred['predictedOutcome'],
225
+ 'modified': modified_pred['predictedOutcome']
226
+ },
227
+ 'chart_type': 'bar_comparison',
228
+ 'color_scheme': {
229
+ 'base': '#6366f1', # Indigo
230
+ 'modified': '#10b981' # Green
231
+ }
232
+ }
233
+
234
+ def sensitivity_analysis(self, case_facts: str) -> Dict[str, Any]:
235
+ """
236
+ Analyze sensitivity to different factors
237
+
238
+ Tests each factor independently to see impact
239
+ """
240
+ base_prediction = self.ml_model.predict_outcome(case_facts, {})
241
+
242
+ sensitivity_results = []
243
+
244
+ # Test each modification independently
245
+ test_modifications = [
246
+ {'remove_prior_conviction': True},
247
+ {'add_strong_alibi': True},
248
+ {'improve_witness_credibility': True},
249
+ {'add_mitigating_factors': 'First-time offender with family responsibilities'},
250
+ {'reduce_flight_risk': True},
251
+ ]
252
+
253
+ for mod in test_modifications:
254
+ result = self.simulate_outcome(
255
+ {'facts': case_facts},
256
+ mod
257
+ )
258
+
259
+ mod_name = list(mod.keys())[0].replace('_', ' ').title()
260
+ sensitivity_results.append({
261
+ 'factor': mod_name,
262
+ 'confidence_impact': result['impact_analysis']['confidence_change'],
263
+ 'outcome_change': result['impact_analysis']['outcome_changed'],
264
+ 'new_outcome': result['modified_case']['prediction']['predictedOutcome']
265
+ })
266
+
267
+ # Sort by impact
268
+ sensitivity_results.sort(
269
+ key=lambda x: abs(x['confidence_impact']),
270
+ reverse=True
271
+ )
272
+
273
+ return {
274
+ 'base_outcome': base_prediction['predictedOutcome'],
275
+ 'base_confidence': base_prediction['confidenceScore'],
276
+ 'sensitivity_analysis': sensitivity_results,
277
+ 'most_influential_factor': sensitivity_results[0]['factor'] if sensitivity_results else None,
278
+ 'visualization_ready': True
279
+ }
280
+
281
+
282
+ # Global instance
283
+ _simulation_engine = None
284
+
285
+ def get_simulation_engine() -> SimulationEngine:
286
+ """Get or create simulation engine instance"""
287
+ global _simulation_engine
288
+ if _simulation_engine is None:
289
+ _simulation_engine = SimulationEngine()
290
+ return _simulation_engine
291
+
292
+
293
+ # Test
294
+ if __name__ == "__main__":
295
+ engine = SimulationEngine()
296
+
297
+ # Test case
298
+ base_case = {
299
+ 'facts': """
300
+ The accused has prior conviction for theft. Witnesses gave contradictory statements.
301
+ Evidence is largely circumstantial. The accused attempted to flee when arrested.
302
+ """,
303
+ 'metadata': {'case_type': 'criminal'}
304
+ }
305
+
306
+ # Test modifications
307
+ modifications = {
308
+ 'remove_prior_conviction': True,
309
+ 'add_strong_alibi': True,
310
+ 'improve_witness_credibility': True,
311
+ }
312
+
313
+ print("Running simulation...")
314
+ result = engine.simulate_outcome(base_case, modifications)
315
+
316
+ print(f"\nBase Outcome: {result['base_case']['prediction']['predictedOutcome']}")
317
+ print(f"Base Confidence: {result['base_case']['prediction']['confidenceScore']}")
318
+
319
+ print(f"\nModified Outcome: {result['modified_case']['prediction']['predictedOutcome']}")
320
+ print(f"Modified Confidence: {result['modified_case']['prediction']['confidenceScore']}")
321
+
322
+ print(f"\nOutcome Changed: {result['impact_analysis']['outcome_changed']}")
323
+ print(f"Confidence Change: {result['impact_analysis']['confidence_change_percent']}%")
324
+ print(f"Key Factors: {', '.join(result['impact_analysis']['key_factors'])}")
325
+ print(f"\nRecommendation: {result['impact_analysis']['recommendation']}")
326
+
translation_service.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Multilingual Translation Service for LexAI
3
+ ==========================================
4
+
5
+ Quick MVP implementation for hackathon demo
6
+ Supports translation between English and Indian regional languages
7
+ """
8
+
9
+ from typing import Dict, Any, Optional
10
+ from googletrans import Translator
11
+ import re
12
+
13
+ class MultilingualService:
14
+ """
15
+ Translate legal content between English and regional languages
16
+ """
17
+
18
+ # Language codes
19
+ LANGUAGES = {
20
+ 'en': 'English',
21
+ 'hi': 'Hindi',
22
+ 'ta': 'Tamil',
23
+ 'te': 'Telugu',
24
+ 'bn': 'Bengali',
25
+ 'mr': 'Marathi',
26
+ 'gu': 'Gujarati',
27
+ 'kn': 'Kannada',
28
+ 'ml': 'Malayalam',
29
+ }
30
+
31
+ def __init__(self):
32
+ self.translator = Translator()
33
+
34
+ def detect_language(self, text: str) -> str:
35
+ """Auto-detect language of input text"""
36
+ try:
37
+ detected = self.translator.detect(text)
38
+ return detected.lang
39
+ except:
40
+ return 'en'
41
+
42
+ def translate_query(self, text: str, source_lang: str = 'auto', target_lang: str = 'en') -> Dict[str, Any]:
43
+ """
44
+ Translate user query to English for processing
45
+
46
+ Args:
47
+ text: User query in regional language
48
+ source_lang: Source language code (auto-detect if 'auto')
49
+ target_lang: Target language (default: English)
50
+
51
+ Returns:
52
+ Dict with translated text and metadata
53
+ """
54
+ try:
55
+ # Auto-detect if needed
56
+ if source_lang == 'auto':
57
+ source_lang = self.detect_language(text)
58
+
59
+ # Translate
60
+ result = self.translator.translate(text, src=source_lang, dest=target_lang)
61
+
62
+ return {
63
+ "original_text": text,
64
+ "translated_text": result.text,
65
+ "source_language": source_lang,
66
+ "source_language_name": self.LANGUAGES.get(source_lang, "Unknown"),
67
+ "target_language": target_lang,
68
+ "confidence": 0.95 # Mock confidence for demo
69
+ }
70
+ except Exception as e:
71
+ return {
72
+ "error": str(e),
73
+ "original_text": text,
74
+ "translated_text": text, # Fallback to original
75
+ "source_language": source_lang,
76
+ "target_language": target_lang
77
+ }
78
+
79
+ def translate_response(self, text: str, target_lang: str = 'hi') -> Dict[str, Any]:
80
+ """
81
+ Translate AI response to user's preferred language
82
+
83
+ Args:
84
+ text: AI response in English
85
+ target_lang: User's preferred language
86
+
87
+ Returns:
88
+ Dict with translated response
89
+ """
90
+ try:
91
+ result = self.translator.translate(text, src='en', dest=target_lang)
92
+
93
+ return {
94
+ "original_text": text,
95
+ "translated_text": result.text,
96
+ "target_language": target_lang,
97
+ "target_language_name": self.LANGUAGES.get(target_lang, "Unknown"),
98
+ }
99
+ except Exception as e:
100
+ return {
101
+ "error": str(e),
102
+ "original_text": text,
103
+ "translated_text": text,
104
+ "target_language": target_lang
105
+ }
106
+
107
+ def translate_legal_document(self, text: str, target_lang: str) -> str:
108
+ """Translate legal document preserving structure"""
109
+ try:
110
+ result = self.translator.translate(text, src='en', dest=target_lang)
111
+ return result.text
112
+ except:
113
+ return text
114
+
115
+ def get_supported_languages(self) -> Dict[str, str]:
116
+ """Return list of supported languages"""
117
+ return self.LANGUAGES
118
+
119
+ def simplify_legal_text(self, legal_text: str, reading_level: str = 'simple') -> Dict[str, Any]:
120
+ """
121
+ Convert complex legal language to plain language
122
+
123
+ Args:
124
+ legal_text: Complex legal text
125
+ reading_level: 'simple' or 'intermediate'
126
+
127
+ Returns:
128
+ Simplified text with explanations
129
+ """
130
+
131
+ # Legal term mappings (MVP - can be expanded)
132
+ legal_simplifications = {
133
+ r'\binter alia\b': 'among other things',
134
+ r'\bres ipsa loquitur\b': 'the thing speaks for itself',
135
+ r'\bper se\b': 'by itself',
136
+ r'\bpro bono\b': 'for free',
137
+ r'\bhabeas corpus\b': 'produce the person (bring before court)',
138
+ r'\bbail\b': 'temporary release from custody',
139
+ r'\bFIR\b': 'First Information Report (initial police complaint)',
140
+ r'\bIPC\b': 'Indian Penal Code (criminal law)',
141
+ r'\bCrPC\b': 'Criminal Procedure Code (how criminal cases work)',
142
+ r'\bappellant\b': 'person appealing the decision',
143
+ r'\brespondent\b': 'person responding to appeal',
144
+ r'\bpetitioner\b': 'person filing the case',
145
+ r'\bdefendant\b': 'person accused/sued',
146
+ r'\bplaintiff\b': 'person filing complaint',
147
+ r'\bbeyond reasonable doubt\b': 'very certain, no significant doubts',
148
+ r'\bprecedent\b': 'previous similar case decision',
149
+ r'\bjurisdiction\b': 'legal authority/area of court',
150
+ r'\bconviction\b': 'found guilty',
151
+ r'\bacquittal\b': 'found not guilty',
152
+ }
153
+
154
+ simplified = legal_text
155
+
156
+ # Apply simplifications
157
+ for pattern, replacement in legal_simplifications.items():
158
+ simplified = re.sub(pattern, replacement, simplified, flags=re.IGNORECASE)
159
+
160
+ # Extract key points (simple sentence extraction)
161
+ sentences = simplified.split('.')
162
+ key_points = [s.strip() + '.' for s in sentences if len(s.strip()) > 20][:5]
163
+
164
+ return {
165
+ "original_text": legal_text,
166
+ "simplified_text": simplified,
167
+ "reading_level": reading_level,
168
+ "key_points": key_points,
169
+ "legal_terms_explained": list(legal_simplifications.values())[:10],
170
+ "summary": f"This text explains legal matters in simpler terms. {len(key_points)} key points identified."
171
+ }
172
+
173
+
174
+ # Global instance
175
+ _translation_service = None
176
+
177
+ def get_translation_service() -> MultilingualService:
178
+ """Get or create translation service instance"""
179
+ global _translation_service
180
+ if _translation_service is None:
181
+ _translation_service = MultilingualService()
182
+ return _translation_service
183
+
184
+
185
+ # Quick test
186
+ if __name__ == "__main__":
187
+ service = MultilingualService()
188
+
189
+ # Test translation
190
+ print("Testing translation...")
191
+ result = service.translate_query("मुझे जमानत कैसे मिलेगी?", source_lang='hi', target_lang='en')
192
+ print(f"Hindi → English: {result['translated_text']}")
193
+
194
+ # Test simplification
195
+ print("\nTesting simplification...")
196
+ legal_text = "The appellant filed a habeas corpus petition seeking bail under Section 302 IPC. The FIR was lodged inter alia alleging murder beyond reasonable doubt."
197
+ simplified = service.simplify_legal_text(legal_text)
198
+ print(f"Original: {legal_text}")
199
+ print(f"Simplified: {simplified['simplified_text']}")
200
+ print(f"Key points: {simplified['key_points']}")
201
+