ResNet101: Optimized for Mobile Deployment

Imagenet classifier and general purpose backbone

ResNet101 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This model is an implementation of ResNet101 found here.

This repository provides scripts to run ResNet101 on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.image_classification
  • Model Stats:
    • Model checkpoint: Imagenet
    • Input resolution: 224x224
    • Number of parameters: 44.5M
    • Model size (float): 170 MB
    • Model size (w8a8): 43.9 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
ResNet101 float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 18.336 ms 0 - 202 MB NPU ResNet101.tflite
ResNet101 float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 18.266 ms 1 - 150 MB NPU ResNet101.dlc
ResNet101 float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 5.808 ms 0 - 247 MB NPU ResNet101.tflite
ResNet101 float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 5.833 ms 1 - 186 MB NPU ResNet101.dlc
ResNet101 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 3.277 ms 0 - 3 MB NPU ResNet101.tflite
ResNet101 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 3.277 ms 1 - 3 MB NPU ResNet101.dlc
ResNet101 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 3.337 ms 0 - 98 MB NPU ResNet101.onnx.zip
ResNet101 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 5.424 ms 0 - 201 MB NPU ResNet101.tflite
ResNet101 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 23.494 ms 1 - 150 MB NPU ResNet101.dlc
ResNet101 float SA7255P ADP Qualcomm® SA7255P TFLITE 18.336 ms 0 - 202 MB NPU ResNet101.tflite
ResNet101 float SA7255P ADP Qualcomm® SA7255P QNN_DLC 18.266 ms 1 - 150 MB NPU ResNet101.dlc
ResNet101 float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 3.264 ms 0 - 3 MB NPU ResNet101.tflite
ResNet101 float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 3.266 ms 1 - 3 MB NPU ResNet101.dlc
ResNet101 float SA8295P ADP Qualcomm® SA8295P TFLITE 5.503 ms 0 - 185 MB NPU ResNet101.tflite
ResNet101 float SA8295P ADP Qualcomm® SA8295P QNN_DLC 5.53 ms 1 - 135 MB NPU ResNet101.dlc
ResNet101 float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 3.245 ms 0 - 3 MB NPU ResNet101.tflite
ResNet101 float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 3.285 ms 1 - 3 MB NPU ResNet101.dlc
ResNet101 float SA8775P ADP Qualcomm® SA8775P TFLITE 5.424 ms 0 - 201 MB NPU ResNet101.tflite
ResNet101 float SA8775P ADP Qualcomm® SA8775P QNN_DLC 23.494 ms 1 - 150 MB NPU ResNet101.dlc
ResNet101 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 2.351 ms 0 - 264 MB NPU ResNet101.tflite
ResNet101 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 2.377 ms 1 - 208 MB NPU ResNet101.dlc
ResNet101 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 2.391 ms 0 - 166 MB NPU ResNet101.onnx.zip
ResNet101 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 1.937 ms 0 - 204 MB NPU ResNet101.tflite
ResNet101 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 1.94 ms 1 - 154 MB NPU ResNet101.dlc
ResNet101 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 2.022 ms 0 - 123 MB NPU ResNet101.onnx.zip
ResNet101 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 1.636 ms 0 - 204 MB NPU ResNet101.tflite
ResNet101 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 1.653 ms 1 - 155 MB NPU ResNet101.dlc
ResNet101 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 1.768 ms 0 - 125 MB NPU ResNet101.onnx.zip
ResNet101 float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 3.506 ms 1 - 1 MB NPU ResNet101.dlc
ResNet101 float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 3.247 ms 86 - 86 MB NPU ResNet101.onnx.zip
ResNet101 w8a8 Dragonwing Q-6690 MTP Qualcomm® Qcm6690 TFLITE 11.87 ms 0 - 175 MB NPU ResNet101.tflite
ResNet101 w8a8 Dragonwing Q-6690 MTP Qualcomm® Qcm6690 QNN_DLC 13.632 ms 0 - 177 MB NPU ResNet101.dlc
ResNet101 w8a8 Dragonwing Q-6690 MTP Qualcomm® Qcm6690 ONNX 41.665 ms 8 - 24 MB CPU ResNet101.onnx.zip
ResNet101 w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 TFLITE 4.306 ms 0 - 45 MB NPU ResNet101.tflite
ResNet101 w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 QNN_DLC 4.565 ms 0 - 2 MB NPU ResNet101.dlc
ResNet101 w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 ONNX 56.379 ms 8 - 58 MB CPU ResNet101.onnx.zip
ResNet101 w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 2.762 ms 0 - 162 MB NPU ResNet101.tflite
ResNet101 w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 2.953 ms 0 - 163 MB NPU ResNet101.dlc
ResNet101 w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 1.65 ms 0 - 228 MB NPU ResNet101.tflite
ResNet101 w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 1.798 ms 0 - 216 MB NPU ResNet101.dlc
ResNet101 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 1.129 ms 0 - 3 MB NPU ResNet101.tflite
ResNet101 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 1.282 ms 0 - 2 MB NPU ResNet101.dlc
ResNet101 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 1.5 ms 0 - 51 MB NPU ResNet101.onnx.zip
ResNet101 w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 1.333 ms 0 - 161 MB NPU ResNet101.tflite
ResNet101 w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 5.233 ms 0 - 163 MB NPU ResNet101.dlc
ResNet101 w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 45.431 ms 0 - 186 MB GPU ResNet101.tflite
ResNet101 w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) ONNX 38.797 ms 9 - 47 MB CPU ResNet101.onnx.zip
ResNet101 w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 2.762 ms 0 - 162 MB NPU ResNet101.tflite
ResNet101 w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 2.953 ms 0 - 163 MB NPU ResNet101.dlc
ResNet101 w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 1.133 ms 0 - 3 MB NPU ResNet101.tflite
ResNet101 w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 1.271 ms 0 - 3 MB NPU ResNet101.dlc
ResNet101 w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 1.76 ms 0 - 169 MB NPU ResNet101.tflite
ResNet101 w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 1.909 ms 0 - 169 MB NPU ResNet101.dlc
ResNet101 w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 1.127 ms 0 - 2 MB NPU ResNet101.tflite
ResNet101 w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 1.313 ms 0 - 2 MB NPU ResNet101.dlc
ResNet101 w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 1.333 ms 0 - 161 MB NPU ResNet101.tflite
ResNet101 w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 5.233 ms 0 - 163 MB NPU ResNet101.dlc
ResNet101 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 0.868 ms 0 - 226 MB NPU ResNet101.tflite
ResNet101 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 0.969 ms 0 - 219 MB NPU ResNet101.dlc
ResNet101 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 1.11 ms 0 - 209 MB NPU ResNet101.onnx.zip
ResNet101 w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 0.742 ms 0 - 163 MB NPU ResNet101.tflite
ResNet101 w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 0.784 ms 0 - 166 MB NPU ResNet101.dlc
ResNet101 w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 0.948 ms 0 - 146 MB NPU ResNet101.onnx.zip
ResNet101 w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile TFLITE 1.67 ms 0 - 173 MB NPU ResNet101.tflite
ResNet101 w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile QNN_DLC 1.806 ms 0 - 178 MB NPU ResNet101.dlc
ResNet101 w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile ONNX 39.586 ms 8 - 25 MB CPU ResNet101.onnx.zip
ResNet101 w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 0.702 ms 0 - 165 MB NPU ResNet101.tflite
ResNet101 w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 0.743 ms 0 - 166 MB NPU ResNet101.dlc
ResNet101 w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 0.926 ms 0 - 144 MB NPU ResNet101.onnx.zip
ResNet101 w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 1.276 ms 0 - 0 MB NPU ResNet101.dlc
ResNet101 w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 1.268 ms 44 - 44 MB NPU ResNet101.onnx.zip

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub Workbench with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.resnet101.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.resnet101.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.resnet101.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.resnet101 import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.resnet101.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.resnet101.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on ResNet101's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of ResNet101 can be found here.

References

Community

Downloads last month
116
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for qualcomm/ResNet101