BGE base BioASQ Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("pavanmantha/bge-base-en-bioembed768")
sentences = [
"Basset is an open source package which applies CNNs to learn the functional activity of DNA sequences from genomics data. Basset was trained on a compendium of accessible genomic sites mapped in 164 cell types by DNase-seq, and demonstrated greater predictive accuracy than previous methods. Basset predictions for the change in accessibility between variant alleles were far greater for Genome-wide association study (GWAS) SNPs that are likely to be causal relative to nearby SNPs in linkage disequilibrium with them. With Basset, a researcher can perform a single sequencing assay in their cell type of interest and simultaneously learn that cell's chromatin accessibility code and annotate every mutation in the genome with its influence on present accessibility and latent potential for accessibility. Thus, Basset offers a powerful computational approach to annotate and interpret the noncoding genome.",
'Describe the applicability of Basset in the context of deep learning',
'What is the causative agent of the "Panama disease" affecting bananas?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.8432 |
| cosine_accuracy@3 |
0.9428 |
| cosine_accuracy@5 |
0.9619 |
| cosine_accuracy@10 |
0.9788 |
| cosine_precision@1 |
0.8432 |
| cosine_precision@3 |
0.3143 |
| cosine_precision@5 |
0.1924 |
| cosine_precision@10 |
0.0979 |
| cosine_recall@1 |
0.8432 |
| cosine_recall@3 |
0.9428 |
| cosine_recall@5 |
0.9619 |
| cosine_recall@10 |
0.9788 |
| cosine_ndcg@10 |
0.9168 |
| cosine_mrr@10 |
0.8963 |
| cosine_map@100 |
0.8972 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.8538 |
| cosine_accuracy@3 |
0.9428 |
| cosine_accuracy@5 |
0.9619 |
| cosine_accuracy@10 |
0.9746 |
| cosine_precision@1 |
0.8538 |
| cosine_precision@3 |
0.3143 |
| cosine_precision@5 |
0.1924 |
| cosine_precision@10 |
0.0975 |
| cosine_recall@1 |
0.8538 |
| cosine_recall@3 |
0.9428 |
| cosine_recall@5 |
0.9619 |
| cosine_recall@10 |
0.9746 |
| cosine_ndcg@10 |
0.9198 |
| cosine_mrr@10 |
0.9017 |
| cosine_map@100 |
0.9027 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.8453 |
| cosine_accuracy@3 |
0.9386 |
| cosine_accuracy@5 |
0.9555 |
| cosine_accuracy@10 |
0.9746 |
| cosine_precision@1 |
0.8453 |
| cosine_precision@3 |
0.3129 |
| cosine_precision@5 |
0.1911 |
| cosine_precision@10 |
0.0975 |
| cosine_recall@1 |
0.8453 |
| cosine_recall@3 |
0.9386 |
| cosine_recall@5 |
0.9555 |
| cosine_recall@10 |
0.9746 |
| cosine_ndcg@10 |
0.9142 |
| cosine_mrr@10 |
0.8945 |
| cosine_map@100 |
0.8953 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.822 |
| cosine_accuracy@3 |
0.928 |
| cosine_accuracy@5 |
0.9449 |
| cosine_accuracy@10 |
0.9703 |
| cosine_precision@1 |
0.822 |
| cosine_precision@3 |
0.3093 |
| cosine_precision@5 |
0.189 |
| cosine_precision@10 |
0.097 |
| cosine_recall@1 |
0.822 |
| cosine_recall@3 |
0.928 |
| cosine_recall@5 |
0.9449 |
| cosine_recall@10 |
0.9703 |
| cosine_ndcg@10 |
0.9015 |
| cosine_mrr@10 |
0.879 |
| cosine_map@100 |
0.8801 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,247 training samples
- Columns:
positive and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
| type |
string |
string |
| details |
- min: 3 tokens
- mean: 102.44 tokens
- max: 512 tokens
|
- min: 5 tokens
- mean: 15.78 tokens
- max: 44 tokens
|
- Samples:
| positive |
anchor |
Restless legs syndrome (RLS), also known as Willis-Ekbom disease (WED), is a common movement disorder characterized by an uncontrollable urge to move because of uncomfortable, sometimes painful sensations in the legs with a diurnal variation and a release with movement. |
Willis-Ekbom disease is also known as? |
Report the outcomes of laser in situ keratomileusis (LASIK) for high myopia correction after long-term follow-up['Report the outcomes of laser in situ keratomileusis (LASIK) for high myopia correction after long-term follow-up.']Laser in situ keratomileusis is also known as LASIKLaser in situ keratomileusis (LASIK) |
What is another name for keratomileusis? |
CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them.CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. CellMaps can easily be integrated in any web page by using an available JavaScript API. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API. CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. CellMaps can easily be integrated in any web page by using an available JavaScript API.CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. CellMaps is an HTML5 open-source web tool that allows displaying, editing, exploring and analyzing biological networks as well as integrating metadata into them. CellMaps can easily be integrated in any web page by using an available JavaScript API. Computations and analyses are remotely executed in high-end servers, and all the functionalities are available through RESTful web services. |
What is CellMaps? |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 32
per_device_eval_batch_size: 16
gradient_accumulation_steps: 16
learning_rate: 2e-05
num_train_epochs: 10
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: True
tf32: False
load_best_model_at_end: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 16
eval_accumulation_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 10
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: False
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_768_cosine_map@100 |
| 0.9624 |
8 |
- |
0.8560 |
0.8821 |
0.8904 |
0.8876 |
| 1.2030 |
10 |
1.2833 |
- |
- |
- |
- |
| 1.9248 |
16 |
- |
0.8655 |
0.8808 |
0.8909 |
0.8889 |
| 2.4060 |
20 |
0.4785 |
- |
- |
- |
- |
| 2.8872 |
24 |
- |
0.8720 |
0.8875 |
0.8893 |
0.8921 |
| 3.6090 |
30 |
0.2417 |
- |
- |
- |
- |
| 3.9699 |
33 |
- |
0.8751 |
0.8924 |
0.8955 |
0.8960 |
| 4.8120 |
40 |
0.1607 |
- |
- |
- |
- |
| 4.9323 |
41 |
- |
0.8799 |
0.8932 |
0.8964 |
0.8952 |
| 5.8947 |
49 |
- |
0.8785 |
0.8944 |
0.9009 |
0.8982 |
| 6.0150 |
50 |
0.1152 |
- |
- |
- |
- |
| 6.9774 |
58 |
- |
0.8803 |
0.8947 |
0.9018 |
0.8975 |
| 7.2180 |
60 |
0.0924 |
- |
- |
- |
- |
| 7.9398 |
66 |
- |
0.8802 |
0.8956 |
0.9016 |
0.8973 |
| 8.4211 |
70 |
0.0832 |
- |
- |
- |
- |
| 8.9023 |
74 |
- |
0.8801 |
0.8956 |
0.9027 |
0.8972 |
| 9.6241 |
80 |
0.074 |
0.8801 |
0.8953 |
0.9027 |
0.8972 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}