Add model card and metadata

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +37 -3
README.md CHANGED
@@ -1,3 +1,37 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: other
4
+ ---
5
+
6
+ # PatchAlign3D: Local Feature Alignment for Dense 3D Shape Understanding
7
+
8
+ PatchAlign3D is an encoder-only 3D model that produces language-aligned patch-level features directly from point clouds. It enables zero-shot 3D part segmentation with fast single-pass inference without requiring test-time multi-view rendering.
9
+
10
+ - **Paper:** [PatchAlign3D: Local Feature Alignment for Dense 3D Shape understanding](https://huggingface.co/papers/2601.02457)
11
+ - **Project Page:** [https://souhail-hadgi.github.io/patchalign3dsite](https://souhail-hadgi.github.io/patchalign3dsite)
12
+ - **Repository:** [https://github.com/souhail-hadgi/PatchAlign3D](https://github.com/souhail-hadgi/PatchAlign3D)
13
+
14
+ ## Sample Usage
15
+
16
+ You can run inference on a single shape and save per-point predictions using the following command from the official repository:
17
+
18
+ ```bash
19
+ python patchalign3d/inference/infer.py \
20
+ --ckpt /path/to/stage2_last.pt \
21
+ --input /path/to/shape.npz \
22
+ --labels "seat,back,leg,arm"
23
+ ```
24
+
25
+ ## Citation
26
+
27
+ ```bibtex
28
+ @misc{hadgi2026patchalign3dlocalfeaturealignment,
29
+ title={PatchAlign3D: Local Feature Alignment for Dense 3D Shape understanding},
30
+ author={Souhail Hadgi and Bingchen Gong and Ramana Sundararaman and Emery Pierson and Lei Li and Peter Wonka and Maks Ovsjanikov},
31
+ year={2026},
32
+ eprint={2601.02457},
33
+ archivePrefix={arXiv},
34
+ primaryClass={cs.CV},
35
+ url={https://arxiv.org/abs/2601.02457},
36
+ }
37
+ ```