AstroPT Euclid VIS+NISP Model
Pre-trained AstroPT model for multi-band image analysis using Euclid VIS and NISP imaging.
Overview
This is a pre-trained checkpoint for the AstroPT framework, trained on multi-band imaging from the Euclid Q1 dataset. The model combines visible (VIS) and near-infrared (NISP: Y, J, H) bands for robust multi-wavelength astronomical image analysis.
Citation: Euclid Collaboration: Siudek, M et al. 2025 (arXiv:2503.15312)
Quick Start
Load Model
import torch
from pathlib import Path
# Load model checkpoint
model_path = "astropt/090M/ckpt.pt"
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load state dict
checkpoint = torch.load(model_path, map_location=device)
# Initialize your model architecture here
# model.load_state_dict(checkpoint)
Inference
from datasets import load_dataset
import torch
# Load dataset
dataset = load_dataset(
"msiudek/astroPT_euclid_dataset",
split="train_batch_1",
streaming=True
)
# Run inference
model.eval()
with torch.no_grad():
for sample in dataset:
# Stack 4 bands: VIS + Y + J + H
images = torch.stack([
torch.tensor(sample['VIS_image'], dtype=torch.float32),
torch.tensor(sample['NISP_Y_image'], dtype=torch.float32),
torch.tensor(sample['NISP_J_image'], dtype=torch.float32),
torch.tensor(sample['NISP_H_image'], dtype=torch.float32),
]) # [4, 224, 224]
images = images.unsqueeze(0) # [1, 4, 224, 224]
# Get embeddings
embeddings = model(images)
Training Data
- Dataset: AstroPT Euclid Dataset
- Bands:
- VIS: Euclid VIS (0.55–0.90 μm)
- Y: Euclid NISP (1.0–1.2 μm)
- J: Euclid NISP (1.2–1.4 μm)
- H: Euclid NISP (1.4–2.0 μm)
Related Models
- AstroPT VIS Model: Single-band (VIS only)
- AstroPT VIS+NISP+SED Model: Multi-modal (imaging + photometry)
Datasets
- Imaging: astroPT_euclid_dataset
- Metadata: astroPT_euclid_metadata
Code & Documentation
For inference code, training scripts, and tutorials, visit the AstroPT GitHub Repository.
Citation
@article{Siudek2025,
title={AstroPT: Astronomical Physics Transformers for Multi-modal Learning},
author={Siudek, M and others},
journal={Euclid Collaboration},
eprint={2503.15312},
archivePrefix={arXiv},
year={2025},
url={https://ui.adsabs.harvard.edu/abs/2025arXiv250315312E/abstract}
}
License
CC-BY-4.0
Last Updated: December 2025
Model Version: 1.0