SentenceTransformer based on intfloat/e5-large-v2
This is a sentence-transformers model finetuned from intfloat/e5-large-v2 on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/e5-large-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("hongming/e5-large-v2-nli-v1")
sentences = [
'A man is sitting in on the side of the street with brass pots.',
'a man does not have brass pots',
'Children are at the beach.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.2515 |
| spearman_cosine |
0.3292 |
| pearson_manhattan |
0.2967 |
| spearman_manhattan |
0.3279 |
| pearson_euclidean |
0.2996 |
| spearman_euclidean |
0.3292 |
| pearson_dot |
0.2515 |
| spearman_dot |
0.3292 |
| pearson_max |
0.2996 |
| spearman_max |
0.3292 |
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.2791 |
| spearman_cosine |
0.305 |
| pearson_manhattan |
0.3034 |
| spearman_manhattan |
0.3048 |
| pearson_euclidean |
0.305 |
| spearman_euclidean |
0.305 |
| pearson_dot |
0.2791 |
| spearman_dot |
0.305 |
| pearson_max |
0.305 |
| spearman_max |
0.305 |
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 10,000 training samples
- Columns:
premise, hypothesis, and label
- Approximate statistics based on the first 1000 samples:
|
premise |
hypothesis |
label |
| type |
string |
string |
int |
| details |
- min: 6 tokens
- mean: 17.38 tokens
- max: 52 tokens
|
- min: 4 tokens
- mean: 10.7 tokens
- max: 31 tokens
|
- 0: ~33.40%
- 1: ~33.30%
- 2: ~33.30%
|
- Samples:
| premise |
hypothesis |
label |
A person on a horse jumps over a broken down airplane. |
A person is training his horse for a competition. |
1 |
A person on a horse jumps over a broken down airplane. |
A person is at a diner, ordering an omelette. |
2 |
A person on a horse jumps over a broken down airplane. |
A person is outdoors, on a horse. |
0 |
- Loss:
SoftmaxLoss
Evaluation Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 1,000 evaluation samples
- Columns:
premise, hypothesis, and label
- Approximate statistics based on the first 1000 samples:
|
premise |
hypothesis |
label |
| type |
string |
string |
int |
| details |
- min: 6 tokens
- mean: 18.44 tokens
- max: 57 tokens
|
- min: 5 tokens
- mean: 10.57 tokens
- max: 25 tokens
|
- 0: ~33.10%
- 1: ~33.30%
- 2: ~33.60%
|
- Samples:
| premise |
hypothesis |
label |
Two women are embracing while holding to go packages. |
The sisters are hugging goodbye while holding to go packages after just eating lunch. |
1 |
Two women are embracing while holding to go packages. |
Two woman are holding packages. |
0 |
Two women are embracing while holding to go packages. |
The men are fighting outside a deli. |
2 |
- Loss:
SoftmaxLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
num_train_epochs: 1
warmup_ratio: 0.1
fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 1
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
eval_use_gather_object: False
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
loss |
sts-dev_spearman_cosine |
sts-test_spearman_cosine |
| 0 |
0 |
- |
- |
0.8888 |
- |
| 0.16 |
100 |
1.0934 |
1.0656 |
0.5733 |
- |
| 0.32 |
200 |
1.0461 |
1.0245 |
0.3466 |
- |
| 0.48 |
300 |
1.037 |
1.0152 |
0.3391 |
- |
| 0.64 |
400 |
1.0013 |
0.9931 |
0.3333 |
- |
| 0.8 |
500 |
1.0014 |
0.9871 |
0.3825 |
- |
| 0.96 |
600 |
0.9827 |
0.9705 |
0.3292 |
- |
| 1.0 |
625 |
- |
- |
- |
0.3050 |
Framework Versions
- Python: 3.8.13
- Sentence Transformers: 3.1.0.dev0
- Transformers: 4.43.3
- PyTorch: 2.1.2
- Accelerate: 0.33.0
- Datasets: 2.16.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers and SoftmaxLoss
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}