YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Fine-tuned CTC model export
sw_data_ctc_local (CTC fine-tuned)
This folder contains a native fairseq2 checkpoint exported from the training run in this notebook.
## Required files and directories
- `model/pp_00/tp_00/sdp_00.pt` (native fairseq2 checkpoint shard)
- `training_config.yaml` (training config used)
- `dataset_card.yaml` (dataset card used)
- `README.md` (this file)
## Local loading (recommended)
1. Ensure these paths exist:
- `{assets_dir}/sw_data_ctc_local.yaml`
- `{export_dir}/model/pp_00/tp_00/sdp_00.pt`
2. Set the asset directory:
```bash
export FAIRSEQ2_USER_ASSET_DIR="{assets_dir}"
```
3. Run inference:
```python
import torch
from omnilingual_asr.models.inference.pipeline import ASRInferencePipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if device == "cuda" else torch.float32
pipeline = ASRInferencePipeline(model_card="sw_data_ctc_local", device=device, dtype=dtype)
preds = pipeline.transcribe(["/path/to/audio.wav"], batch_size=1)
print(preds[0])
```
## Notes
- The checkpoint is in *native fairseq2* format (directory-based).
- If you re-export a new checkpoint, overwrite the `model/` directory and update the asset card.
Model card name: sw_data_ctc_local Model directory: /home/eo/Workspace/OMNI/sw_data_ctc_export/model Training config: /home/eo/Workspace/OMNI/sw_data_ctc_export/training_config.yaml Dataset card: /home/eo/Workspace/OMNI/sw_data_ctc_export/dataset_card.yaml Source step: /home/eo/Workspace/OMNI/omnilingual-asr/outputs/sw_data_ctc/ws_1.a16ae016/checkpoints/step_2000 Asset card: /home/eo/Workspace/OMNI/fairseq2_assets/sw_data_ctc_local.yaml
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support