skills_go_to_github / trl /references /troubleshooting.md
evalstate
update preferences prefer uv
7093da7
# Troubleshooting TRL Training Jobs
Common issues and solutions when training with TRL on Hugging Face Jobs.
## Training Hangs at "Starting training..." Step
**Problem:** Job starts but hangs at the training step - never progresses, never times out, just sits there.
**Root Cause:** Using `eval_strategy="steps"` or `eval_strategy="epoch"` without providing an `eval_dataset` to the trainer.
**Solution:**
**Option A: Provide eval_dataset (recommended)**
```python
# Create train/eval split
dataset_split = dataset.train_test_split(test_size=0.1, seed=42)
trainer = SFTTrainer(
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset_split["train"],
eval_dataset=dataset_split["test"], # ← MUST provide when eval_strategy is enabled
args=SFTConfig(
eval_strategy="steps",
eval_steps=50,
...
),
)
```
**Option B: Disable evaluation**
```python
trainer = SFTTrainer(
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset,
# No eval_dataset
args=SFTConfig(
eval_strategy="no", # ← Explicitly disable
...
),
)
```
**Prevention:**
- Always create train/eval split for better monitoring
- Use `dataset.train_test_split(test_size=0.1, seed=42)`
- Check example scripts: `scripts/train_sft_example.py` includes proper eval setup
## Job Times Out
**Problem:** Job terminates before training completes, all progress lost.
**Solutions:**
- Increase timeout parameter (e.g., `"timeout": "4h"`)
- Reduce `num_train_epochs` or use smaller dataset slice
- Use smaller model or enable LoRA/PEFT to speed up training
- Add 20-30% buffer to estimated time for loading/saving overhead
**Prevention:**
- Always start with a quick demo run to estimate timing
- Use `scripts/estimate_cost.py` to get time estimates
- Monitor first runs closely via Trackio or logs
## Model Not Saved to Hub
**Problem:** Training completes but model doesn't appear on Hub - all work lost.
**Check:**
- [ ] `push_to_hub=True` in training config
- [ ] `hub_model_id` specified with username (e.g., `"username/model-name"`)
- [ ] `secrets={"HF_TOKEN": "$HF_TOKEN"}` in job submission
- [ ] User has write access to target repo
- [ ] Token has write permissions (check at https://huggingface.co/settings/tokens)
- [ ] Training script calls `trainer.push_to_hub()` at the end
**See:** `references/hub_saving.md` for detailed Hub authentication troubleshooting
## Out of Memory (OOM)
**Problem:** Job fails with CUDA out of memory error.
**Solutions (in order of preference):**
1. **Reduce batch size:** Lower `per_device_train_batch_size` (try 4 β†’ 2 β†’ 1)
2. **Increase gradient accumulation:** Raise `gradient_accumulation_steps` to maintain effective batch size
3. **Enable LoRA/PEFT:** Use `peft_config=LoraConfig(r=16, lora_alpha=32)` to train adapters only
4. **Use larger GPU:** Switch from `t4-medium` β†’ `a10g-large` β†’ `a100-large`
5. **Enable gradient checkpointing:** Set `gradient_checkpointing=True` in config (slower but saves memory)
6. **Use smaller model:** Try a smaller variant (e.g., 0.5B instead of 3B)
**Memory guidelines:**
- T4 (16GB): <1B models with LoRA
- A10G (24GB): 1-3B models with LoRA, <1B full fine-tune
- A100 (40GB/80GB): 7B+ models with LoRA, 3B full fine-tune
## Dataset Format Error
**Problem:** Training fails with dataset format errors or missing fields.
**Solutions:**
1. **Check format documentation:**
```python
hf_doc_fetch("https://huggingface.co/docs/trl/dataset_formats")
```
2. **Validate dataset before training:**
```bash
uv run https://huggingface.co/datasets/mcp-tools/skills/raw/main/dataset_inspector.py \
--dataset <dataset-name> --split train
```
Or via hf_jobs:
```python
hf_jobs("uv", {
"script": "https://huggingface.co/datasets/mcp-tools/skills/raw/main/dataset_inspector.py",
"script_args": ["--dataset", "dataset-name", "--split", "train"]
})
```
3. **Verify field names:**
- **SFT:** Needs "messages" field (conversational), OR "text" field, OR "prompt"/"completion"
- **DPO:** Needs "chosen" and "rejected" fields
- **GRPO:** Needs prompt-only format
4. **Check dataset split:**
- Ensure split exists (e.g., `split="train"`)
- Preview dataset: `load_dataset("name", split="train[:5]")`
## Import/Module Errors
**Problem:** Job fails with "ModuleNotFoundError" or import errors.
**Solutions:**
1. **Add PEP 723 header with dependencies:**
```python
# /// script
# dependencies = [
# "trl>=0.12.0",
# "peft>=0.7.0",
# "transformers>=4.36.0",
# ]
# ///
```
2. **Verify exact format:**
- Must have `# ///` delimiters (with space after `#`)
- Dependencies must be valid PyPI package names
- Check spelling and version constraints
3. **Test locally first:**
```bash
uv run train.py # Tests if dependencies are correct
```
## Authentication Errors
**Problem:** Job fails with authentication or permission errors when pushing to Hub.
**Solutions:**
1. **Verify authentication:**
```python
mcp__huggingface__hf_whoami() # Check who's authenticated
```
2. **Check token permissions:**
- Go to https://huggingface.co/settings/tokens
- Ensure token has "write" permission
- Token must not be "read-only"
3. **Verify token in job:**
```python
"secrets": {"HF_TOKEN": "$HF_TOKEN"} # Must be in job config
```
4. **Check repo permissions:**
- User must have write access to target repo
- If org repo, user must be member with write access
- Repo must exist or user must have permission to create
## Job Stuck or Not Starting
**Problem:** Job shows "pending" or "starting" for extended period.
**Solutions:**
- Check Jobs dashboard for status: https://huggingface.co/jobs
- Verify hardware availability (some GPU types may have queues)
- Try different hardware flavor if one is heavily utilized
- Check for account billing issues (Jobs requires paid plan)
**Typical startup times:**
- CPU jobs: 10-30 seconds
- GPU jobs: 30-90 seconds
- If >3 minutes: likely queued or stuck
## Training Loss Not Decreasing
**Problem:** Training runs but loss stays flat or doesn't improve.
**Solutions:**
1. **Check learning rate:** May be too low (try 2e-5 to 5e-5) or too high (try 1e-6)
2. **Verify dataset quality:** Inspect examples to ensure they're reasonable
3. **Check model size:** Very small models may not have capacity for task
4. **Increase training steps:** May need more epochs or larger dataset
5. **Verify dataset format:** Wrong format may cause degraded training
## Logs Not Appearing
**Problem:** Cannot see training logs or progress.
**Solutions:**
1. **Wait 30-60 seconds:** Initial logs can be delayed
2. **Check logs via MCP tool:**
```python
hf_jobs("logs", {"job_id": "your-job-id"})
```
3. **Use Trackio for real-time monitoring:** See `references/trackio_guide.md`
4. **Verify job is actually running:**
```python
hf_jobs("inspect", {"job_id": "your-job-id"})
```
## Checkpoint/Resume Issues
**Problem:** Cannot resume from checkpoint or checkpoint not saved.
**Solutions:**
1. **Enable checkpoint saving:**
```python
SFTConfig(
save_strategy="steps",
save_steps=100,
hub_strategy="every_save", # Push each checkpoint
)
```
2. **Verify checkpoints pushed to Hub:** Check model repo for checkpoint folders
3. **Resume from checkpoint:**
```python
trainer = SFTTrainer(
model="username/model-name", # Can be checkpoint path
resume_from_checkpoint="username/model-name/checkpoint-1000",
)
```
## Getting Help
If issues persist:
1. **Check TRL documentation:**
```python
hf_doc_search("your issue", product="trl")
```
2. **Check Jobs documentation:**
```python
hf_doc_fetch("https://huggingface.co/docs/huggingface_hub/guides/jobs")
```
3. **Review related guides:**
- `references/hub_saving.md` - Hub authentication issues
- `references/hardware_guide.md` - Hardware selection and specs
- `references/training_patterns.md` - Eval dataset requirements
- SKILL.md "Working with Scripts" section - Script format and URL issues
4. **Ask in HF forums:** https://discuss.huggingface.co/