Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    ArrowInvalid
Message:      Failed to parse string: 'No' as a scalar of type double
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 714, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2224, in cast_table_to_schema
                  cast_array_to_feature(
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1795, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2086, in cast_array_to_feature
                  return array_cast(
                         ^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1797, in wrapper
                  return func(array, *args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1949, in array_cast
                  return array.cast(pa_type)
                         ^^^^^^^^^^^^^^^^^^^
                File "pyarrow/array.pxi", line 1135, in pyarrow.lib.Array.cast
                File "/usr/local/lib/python3.12/site-packages/pyarrow/compute.py", line 412, in cast
                  return call_function("cast", [arr], options, memory_pool)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/_compute.pyx", line 604, in pyarrow._compute.call_function
                File "pyarrow/_compute.pyx", line 399, in pyarrow._compute.Function.call
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Failed to parse string: 'No' as a scalar of type double
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1455, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1054, in convert_to_parquet
                  builder.download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1858, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

fontSize
float64
height
float64
page
int64
type
string
value
null
width
float64
x
float64
y
float64
12
27
1
text
null
403
750.667
452.533
12
22
1
text
null
21
133.333
552
12
19
1
text
null
16
133.6
580
12
18
1
text
null
18
134.2
603.2
12
25
1
text
null
677
70.999988
452.800006
12
29
1
text
null
593
269.333
260.267
12
29
1
text
null
90
936.902976
646.1
12
29
1
text
null
90
938.106
690.1
12
29
1
text
null
90
936.106
726.1
12
29
1
text
null
90
937.106
755.1
12
29
1
text
null
90
936.106
784.1
12
29
1
text
null
90
934.106
816.1
12
29
1
text
null
90
936.106
844.1
12
29
1
text
null
90
936.106
877.1
12
29
1
text
null
90
937.106
908.1
12
29
1
text
null
90
938.106
936.1
12
29
1
text
null
90
938.106
963.1
12
29
1
text
null
90
939.106
1,007.1
12
29
1
text
null
90
937.106
1,052.1
12
29
1
text
null
90
936.106
1,102.1
12
29
1
text
null
90
934.106
1,170.1
12
29
1
text
null
90
937.106
1,220.1
12
29
1
text
null
90
931.106
1,266.1
12
29
1
text
null
90
938.106
1,308.1
12
29
1
text
null
90
936.106
1,354.1
12
29
1
text
null
90
936.106
1,402.1
12
29
1
text
null
90
934.106
1,441.1
12
29
1
text
null
90
1,041.11
1,444.1
12
29
1
text
null
90
1,042.11
1,408.1
12
29
1
text
null
90
1,042.11
1,364.1
12
29
1
text
null
90
1,046.11
1,308.1
12
29
1
text
null
90
1,046.11
1,264.1
12
29
1
text
null
90
1,040.11
1,217.1
12
29
1
text
null
90
1,046.11
1,167.1
12
29
1
text
null
90
1,045.11
1,105.1
12
29
1
text
null
90
1,045.11
1,054.1
12
29
1
text
null
90
1,044.11
1,007.1
12
29
1
text
null
90
1,045.11
965.1
12
29
1
text
null
90
1,047.11
938.1
12
29
1
text
null
90
1,047.11
908.1
12
29
1
text
null
90
1,047.11
876.1
12
29
1
text
null
90
1,048.11
844.1
12
29
1
text
null
90
1,048.11
820.1
12
29
1
text
null
90
1,047.11
781.1
12
29
1
text
null
90
1,049.11
750.1
12
29
1
text
null
90
1,048.11
723.1
12
29
1
text
null
90
1,045.11
689.1
12
29
1
text
null
90
1,048.11
646.1
12
29
2
text
null
593
253.067
249.6
12
29
2
text
null
593
257.067
334.933
12
29
3
text
null
593
211.733
756.267
12
29
3
text
null
828
254.4
904.267
12
29
3
text
null
829
255.733
944.267
12
29
3
text
null
478
254.4
989.6
12
29
3
text
null
366
196.804
654.933
12
29
3
text
null
366
626.404
654.933
12
29
3
text
null
366
451.737
709.6
12
29
3
text
null
312
325.071
857.6
12
29
3
text
null
312
641.337
806.933
12
29
3
text
null
276
808.004
856.267
12
29
3
text
null
437
643.204
562.933
12
29
4
text
null
437
149.608
977.6
12
29
4
text
null
437
704.275
980.267
12
29
4
text
null
437
706.941
878.933
12
29
4
text
null
437
642.941
481.6
12
29
4
text
null
437
644.275
530.933
12
29
4
text
null
437
645.608
581.6
12
29
4
text
null
437
645.608
632.267
12
29
5
text
null
845
228.275
437.6
12
29
5
text
null
733
308.275
512.267
12
29
5
text
null
609
136.012
573.6
12
29
5
text
null
782
301.083
1,056.27
12
29
5
text
null
782
237.083
1,005.6
12
29
5
text
null
825
257.083
1,105.6
12
29
5
text
null
609
245.083
1,156.27
12
29
5
text
null
446
187.749
1,234
12
29
5
text
null
276
753.083
1,234.93
12
29
6
text
null
181
905.084
137.6
12
29
6
text
null
695
213.355
461.6
12
29
6
text
null
492
554.688
514.933
12
29
6
text
null
250
743.221
690.933
12
29
7
text
null
250
320.288
518.933
12
29
7
text
null
250
833.621
517.6
12
29
7
text
null
313
754.955
569.6
12
29
7
text
null
313
652.825
620.267
12
29
7
text
null
261
812.825
669.6
12
29
7
text
null
267
297.629
673.6
12
29
7
text
null
298
264.296
770.933
12
29
7
text
null
290
788.296
770.933
12
29
7
text
null
363
712.296
844.267
12
29
7
text
null
363
193.363
850.933
12
29
7
text
null
322
242.696
918.933
12
29
7
text
null
363
200.029
996.267
12
29
7
text
null
363
768.029
922.933
12
29
7
text
null
363
720.029
997.6
12
29
7
text
null
165
284.029
393.6
12
29
7
text
null
63
483.629
395.067
12
29
7
text
null
45
176.296
393.6
12
29
7
text
null
333
231.631
570.534
12
29
7
text
null
431
136.634
618.538
End of preview.
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

πŸ—‚οΈ Dataset Name

Fillable PDF Form Fields Dataset


πŸ“˜ Description

This dataset contains structured data extracted from multi-page PDF form templates stored in MongoDB.
Each record represents a single form field (such as a text box or checkbox) from one of many forms processed by Instafill.ai PDF form filler.

The dataset is designed to help analyze, visualize, or train models that understand how form layouts are represented digitally β€” including their positions, sizes, and attributes within a document canvas.


🧱 Schema

Column Type Description
fontSize float Font size used for the text field (if applicable).
height float Height of the field’s bounding box in pixels.
page int Page number where the field appears in the PDF form.
type string Type of field, e.g. text, checkbox, radio, select, etc.
value string Default or filled-in value (if available).
width float Width of the field’s bounding box in pixels.
x float Horizontal coordinate (X position) of the field on the page canvas.
y float Vertical coordinate (Y position) of the field on the page canvas.

πŸ“Š Data Characteristics

  • Covers multiple PDF forms (each form represented by many rows).
  • Coordinates (x, y) are relative to the original PDF page canvas (in points or pixels depending on processing scale).
  • Useful for layout analysis, document understanding, and AI form-filling applications.
  • Data collected from production forms used in real-world automation tasks β€” anonymized to remove any personal data.

πŸ’‘ Example Row

fontSize height page type value width x y
12 22 1 text 390 222.364 444.273

πŸš€ Possible Use Cases

  • Training layout-aware AI models for PDF form detection and completion.
  • Visualizing field distributions to optimize form design and alignment.
  • Benchmarking AI form-filling systems like Instafill.ai for accuracy and placement consistency.
  • Studying geometric structure of documents across industries (legal, medical, financial, etc.).
Downloads last month
4