|
|
--- |
|
|
license: cc-by-4.0 |
|
|
tags: |
|
|
- space |
|
|
- plasma |
|
|
- physics |
|
|
size_categories: |
|
|
- 100K<n<1M |
|
|
pretty_name: Vlasiator Dataset for Machine Learning Studies |
|
|
citation: | |
|
|
@misc{vlasiator2025mldata, |
|
|
title = {Vlasiator Dataset for Machine Learning Studies}, |
|
|
author = {Zaitsev, Ivan and Holmberg, Daniel and Alho, Markku and Bouri, Ioanna and |
|
|
Franssila, Fanni and Jeong, Haewon and Palmroth, Minna and Roos, Teemu}, |
|
|
year = {2025}, |
|
|
publisher = {Hugging Face}, |
|
|
url = {https://huggingface.co/datasets/deinal/spacecast-data}, |
|
|
doi = {10.57967/hf/7027}, |
|
|
} |
|
|
--- |
|
|
|
|
|
# Vlasiator Dataset for Machine Learning Studies |
|
|
|
|
|
The data is stored in [Zarr](https://zarr.dev). |
|
|
|
|
|
It can be downloaded to a local `data` directory with: |
|
|
``` |
|
|
from huggingface_hub import snapshot_download |
|
|
|
|
|
snapshot_download( |
|
|
repo_id="deinal/spacecast-data", |
|
|
repo_type="dataset", |
|
|
local_dir="data" |
|
|
) |
|
|
``` |
|
|
|
|
|
This will yield a local `data` folder that can be used with [spacecast](https://github.com/fmihpc/spacecast): |
|
|
``` |
|
|
data/ |
|
|
├── graph/ - Directory containing graphs for training |
|
|
├── run_1.zarr/ - Vlasiator run 1 with ρ = 0.5 cm⁻³ solar wind |
|
|
├── run_2.zarr/ - Vlasiator run 2 with ρ = 1.0 cm⁻³ solar wind |
|
|
├── run_3.zarr/ - Vlasiator run 3 with ρ = 1.5 cm⁻³ solar wind |
|
|
├── run_4.zarr/ - Vlasiator run 4 with ρ = 2.0 cm⁻³ solar wind |
|
|
├── static.zarr/ - Static features x, z, r coordinates |
|
|
├── vlasiator_config.yaml - Configuration file for neural-lam |
|
|
├── vlasiator_run_1.yaml - Configuration file for datastore 1, referred to from vlasiator_config.yaml |
|
|
├── vlasiator_run_2.yaml - Configuration file for datastore 2, referred to from vlasiator_config.yaml |
|
|
├── vlasiator_run_3.yaml - Configuration file for datastore 3, referred to from vlasiator_config.yaml |
|
|
└── vlasiator_run_4.yaml - Configuration file for datastore 4, referred to from vlasiator_config.yaml |
|
|
``` |
|
|
|
|
|
Preprocess the runs with [mllam-data-prep](https://github.com/mllam/mllam-data-prep), run: |
|
|
``` |
|
|
mllam_data_prep data/vlasiator_run_1.yaml |
|
|
mllam_data_prep data/vlasiator_run_2.yaml |
|
|
mllam_data_prep data/vlasiator_run_3.yaml |
|
|
mllam_data_prep data/vlasiator_run_4.yaml |
|
|
``` |
|
|
This produces training-ready Zarr stores in the data directory. |
|
|
|
|
|
Simple, multiscale, and hierarchical graphs are included already, but can be created using the following commands: |
|
|
``` |
|
|
python -m neural_lam.create_graph --config_path data/vlasiator_config.yaml --name simple --levels 1 --coarsen-factor 5 --plot |
|
|
python -m neural_lam.create_graph --config_path data/vlasiator_config.yaml --name multiscale --levels 3 --coarsen-factor 5 --plot |
|
|
python -m neural_lam.create_graph --config_path data/vlasiator_config.yaml --name hierarchical --levels 3 --coarsen-factor 5 --hierarchical --plot |
|
|
``` |
|
|
|
|
|
## Citation |
|
|
|
|
|
``` |
|
|
@misc{vlasiator2025mldata, |
|
|
title = {Vlasiator Dataset for Machine Learning Studies}, |
|
|
author = {Zaitsev, Ivan and Holmberg, Daniel and Alho, Markku and Bouri, Ioanna and |
|
|
Franssila, Fanni and Jeong, Haewon and Palmroth, Minna and Roos, Teemu}, |
|
|
year = {2025}, |
|
|
publisher = {Hugging Face}, |
|
|
url = {https://huggingface.co/datasets/deinal/spacecast-data}, |
|
|
doi = {10.57967/hf/7027}, |
|
|
} |
|
|
``` |