Dataset Viewer
Auto-converted to Parquet Duplicate
id
stringlengths
11
11
created
timestamp[s]date
2026-01-01 00:00:00
2026-01-01 00:00:00
topic
stringclasses
12 values
task_type
stringclasses
8 values
difficulty
stringclasses
4 values
instruction
stringlengths
201
264
input
stringclasses
1 value
output
stringclasses
7 values
metadata
dict
train_00000
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
data_pipeline
advanced
Task: data_pipeline Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Bash Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "tooling", "documentation" ] }
train_00001
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
expert
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Rust Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Rust", "developer_needs": [ "documentation", "tests_are_truth", "reproducibility" ] }
train_00002
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
compare
intermediate
Task: compare Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Bash Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Bash", "developer_needs": [ "governance", "tooling", "cost_latency_tradeoffs" ] }
train_00003
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
explain
expert
Task: explain Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Rust Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "ci_integration", "tests_are_truth" ] }
train_00004
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
eval
advanced
Task: eval Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: TypeScript Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "reproducibility", "tooling" ] }
train_00005
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
intermediate
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: C# Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "governance", "repo_scale_reasoning" ] }
train_00006
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
review
expert
Task: review Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: SQL Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "SQL", "developer_needs": [ "security_gates", "cost_latency_tradeoffs", "tooling" ] }
train_00007
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
agent_loop
expert
Task: agent_loop Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: SQL Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "SQL", "developer_needs": [ "documentation", "tests_are_truth", "governance" ] }
train_00008
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
eval
expert
Task: eval Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: TypeScript Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "evaluation_metrics" ] }
train_00009
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
data_pipeline
foundation
Task: data_pipeline Topic: Model merging, distillation, and continued pretraining Difficulty: foundation Target language: C# Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "C#", "developer_needs": [ "documentation", "tooling", "security_gates" ] }
train_00010
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
eval
advanced
Task: eval Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: TypeScript Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "governance" ] }
train_00011
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
review
foundation
Task: review Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: foundation Target language: Java Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "Java", "developer_needs": [ "tests_are_truth", "governance", "documentation" ] }
train_00012
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
eval
expert
Task: eval Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: Python Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "Python", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "ci_integration" ] }
train_00013
2026-01-01T00:00:00
Extended context and repo-scale understanding
data_pipeline
foundation
Task: data_pipeline Topic: Extended context and repo-scale understanding Difficulty: foundation Target language: TypeScript Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "TypeScript", "developer_needs": [ "tests_are_truth", "tooling", "cost_latency_tradeoffs" ] }
train_00014
2026-01-01T00:00:00
Extended context and repo-scale understanding
agent_loop
foundation
Task: agent_loop Topic: Extended context and repo-scale understanding Difficulty: foundation Target language: JavaScript Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "JavaScript", "developer_needs": [ "evaluation_metrics", "reproducibility", "governance" ] }
train_00015
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
review
foundation
Task: review Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: foundation Target language: Java Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "Java", "developer_needs": [ "security_gates", "tooling", "evaluation_metrics" ] }
train_00016
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
data_pipeline
advanced
Task: data_pipeline Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: JavaScript Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "JavaScript", "developer_needs": [ "ci_integration", "tooling", "security_gates" ] }
train_00017
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
eval
advanced
Task: eval Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: SQL Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "repo_scale_reasoning" ] }
train_00018
2026-01-01T00:00:00
Extended context and repo-scale understanding
data_pipeline
advanced
Task: data_pipeline Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: SQL Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "documentation", "ci_integration" ] }
train_00019
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
design
foundation
Task: design Topic: Reasoning-first coding models and tunable deliberation Difficulty: foundation Target language: TypeScript Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "evaluation_metrics", "reproducibility" ] }
train_00020
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
review
advanced
Task: review Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Python Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "Python", "developer_needs": [ "tests_are_truth", "tooling", "documentation" ] }
train_00021
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
expert
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Python Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "Python", "developer_needs": [ "tests_are_truth", "security_gates", "ci_integration" ] }
train_00022
2026-01-01T00:00:00
Extended context and repo-scale understanding
design
intermediate
Task: design Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: SQL Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "security_gates", "tooling" ] }
train_00023
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
intermediate
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Java Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Java", "developer_needs": [ "governance", "cost_latency_tradeoffs", "ci_integration" ] }
train_00024
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
design
foundation
Task: design Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: foundation Target language: Python Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Python", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "governance" ] }
train_00025
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
compare
expert
Task: compare Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: SQL Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "SQL", "developer_needs": [ "tooling", "governance", "cost_latency_tradeoffs" ] }
train_00026
2026-01-01T00:00:00
Extended context and repo-scale understanding
design
advanced
Task: design Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Rust Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "security_gates", "documentation" ] }
train_00027
2026-01-01T00:00:00
Secure code generation and policy gates
review
intermediate
Task: review Topic: Secure code generation and policy gates Difficulty: intermediate Target language: C# Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "C#", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "repo_scale_reasoning" ] }
train_00028
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
code
foundation
Task: code Topic: SWE-bench style real-repo evaluation Difficulty: foundation Target language: Java Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "repo_scale_reasoning", "governance" ] }
train_00029
2026-01-01T00:00:00
Extended context and repo-scale understanding
agent_loop
advanced
Task: agent_loop Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Java Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Java", "developer_needs": [ "security_gates", "evaluation_metrics", "tooling" ] }
train_00030
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
eval
expert
Task: eval Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Go Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "Go", "developer_needs": [ "ci_integration", "documentation", "tooling" ] }
train_00031
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
eval
foundation
Task: eval Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: foundation Target language: JavaScript Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "documentation", "evaluation_metrics" ] }
train_00032
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
review
expert
Task: review Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: SQL Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "ci_integration", "evaluation_metrics" ] }
train_00033
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
eval
foundation
Task: eval Topic: Code-specialized model families and sizing tradeoffs Difficulty: foundation Target language: Bash Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "Bash", "developer_needs": [ "documentation", "evaluation_metrics", "ci_integration" ] }
train_00034
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
design
intermediate
Task: design Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: C# Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "security_gates", "cost_latency_tradeoffs" ] }
train_00035
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
design
intermediate
Task: design Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Rust Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "cost_latency_tradeoffs", "reproducibility" ] }
train_00036
2026-01-01T00:00:00
Extended context and repo-scale understanding
code
foundation
Task: code Topic: Extended context and repo-scale understanding Difficulty: foundation Target language: Go Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "cost_latency_tradeoffs", "governance" ] }
train_00037
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
advanced
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: TypeScript Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "TypeScript", "developer_needs": [ "evaluation_metrics", "cost_latency_tradeoffs", "documentation" ] }
train_00038
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
agent_loop
expert
Task: agent_loop Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Go Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "ci_integration", "tooling" ] }
train_00039
2026-01-01T00:00:00
Secure code generation and policy gates
design
expert
Task: design Topic: Secure code generation and policy gates Difficulty: expert Target language: SQL Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "repo_scale_reasoning", "governance" ] }
train_00040
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
data_pipeline
advanced
Task: data_pipeline Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Rust Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "governance" ] }
train_00041
2026-01-01T00:00:00
Secure code generation and policy gates
design
intermediate
Task: design Topic: Secure code generation and policy gates Difficulty: intermediate Target language: JavaScript Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "JavaScript", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "governance" ] }
train_00042
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
review
expert
Task: review Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: JavaScript Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "JavaScript", "developer_needs": [ "governance", "cost_latency_tradeoffs", "tooling" ] }
train_00043
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
review
foundation
Task: review Topic: Governance, provenance, and licensing for code data Difficulty: foundation Target language: C# Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "C#", "developer_needs": [ "tooling", "evaluation_metrics", "repo_scale_reasoning" ] }
train_00044
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
design
foundation
Task: design Topic: Mixture-of-Experts (MoE) for code Difficulty: foundation Target language: TypeScript Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "TypeScript", "developer_needs": [ "tooling", "repo_scale_reasoning", "governance" ] }
train_00045
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
design
intermediate
Task: design Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: SQL Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "tests_are_truth" ] }
train_00046
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
design
intermediate
Task: design Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: TypeScript Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "tooling", "reproducibility" ] }
train_00047
2026-01-01T00:00:00
Extended context and repo-scale understanding
review
advanced
Task: review Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: C# Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "governance", "cost_latency_tradeoffs" ] }
train_00048
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
compare
foundation
Task: compare Topic: Model merging, distillation, and continued pretraining Difficulty: foundation Target language: Java Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Java", "developer_needs": [ "reproducibility", "tests_are_truth", "repo_scale_reasoning" ] }
train_00049
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
agent_loop
expert
Task: agent_loop Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: JavaScript Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "JavaScript", "developer_needs": [ "evaluation_metrics", "security_gates", "documentation" ] }
train_00050
2026-01-01T00:00:00
Extended context and repo-scale understanding
review
intermediate
Task: review Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Python Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "Python", "developer_needs": [ "governance", "tests_are_truth", "repo_scale_reasoning" ] }
train_00051
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
compare
foundation
Task: compare Topic: Model merging, distillation, and continued pretraining Difficulty: foundation Target language: JavaScript Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "JavaScript", "developer_needs": [ "tooling", "repo_scale_reasoning", "security_gates" ] }
train_00052
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
foundation
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: foundation Target language: Bash Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "tooling", "security_gates" ] }
train_00053
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
review
expert
Task: review Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: Go Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "Go", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "cost_latency_tradeoffs" ] }
train_00054
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
expert
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Python Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Python", "developer_needs": [ "cost_latency_tradeoffs", "governance", "documentation" ] }
train_00055
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
review
advanced
Task: review Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: C# Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "C#", "developer_needs": [ "reproducibility", "documentation", "repo_scale_reasoning" ] }
train_00056
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
compare
expert
Task: compare Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: C# Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "C#", "developer_needs": [ "security_gates", "tooling", "cost_latency_tradeoffs" ] }
train_00057
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
compare
advanced
Task: compare Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Bash Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "cost_latency_tradeoffs", "evaluation_metrics" ] }
train_00058
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
compare
intermediate
Task: compare Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Bash Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "evaluation_metrics", "documentation" ] }
train_00059
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
review
intermediate
Task: review Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: SQL Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "SQL", "developer_needs": [ "security_gates", "governance", "repo_scale_reasoning" ] }
train_00060
2026-01-01T00:00:00
Secure code generation and policy gates
compare
foundation
Task: compare Topic: Secure code generation and policy gates Difficulty: foundation Target language: C# Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "C#", "developer_needs": [ "security_gates", "tests_are_truth", "tooling" ] }
train_00061
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
agent_loop
expert
Task: agent_loop Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: C# Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "C#", "developer_needs": [ "governance", "tests_are_truth", "evaluation_metrics" ] }
train_00062
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
code
advanced
Task: code Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Go Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Go", "developer_needs": [ "ci_integration", "cost_latency_tradeoffs", "tests_are_truth" ] }
train_00063
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
review
expert
Task: review Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: TypeScript Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "ci_integration", "evaluation_metrics" ] }
train_00064
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
design
foundation
Task: design Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: foundation Target language: Python Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Python", "developer_needs": [ "cost_latency_tradeoffs", "tests_are_truth", "tooling" ] }
train_00065
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
data_pipeline
advanced
Task: data_pipeline Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: JavaScript Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "JavaScript", "developer_needs": [ "governance", "documentation", "cost_latency_tradeoffs" ] }
train_00066
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
expert
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Python Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Python", "developer_needs": [ "repo_scale_reasoning", "tooling", "tests_are_truth" ] }
train_00067
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
compare
intermediate
Task: compare Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: JavaScript Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "governance", "tests_are_truth" ] }
train_00068
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
agent_loop
advanced
Task: agent_loop Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Go Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Go", "developer_needs": [ "documentation", "security_gates", "tooling" ] }
train_00069
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
design
expert
Task: design Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Go Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Go", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "ci_integration" ] }
train_00070
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
explain
foundation
Task: explain Topic: Mixture-of-Experts (MoE) for code Difficulty: foundation Target language: C# Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "C#", "developer_needs": [ "governance", "cost_latency_tradeoffs", "security_gates" ] }
train_00071
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
advanced
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: SQL Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "tooling", "tests_are_truth" ] }
train_00072
2026-01-01T00:00:00
Extended context and repo-scale understanding
data_pipeline
advanced
Task: data_pipeline Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: C# Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "C#", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "tooling" ] }
train_00073
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
advanced
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Bash Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "reproducibility", "documentation" ] }
train_00074
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
agent_loop
foundation
Task: agent_loop Topic: Code-specialized model families and sizing tradeoffs Difficulty: foundation Target language: SQL Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "repo_scale_reasoning", "documentation" ] }
train_00075
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
expert
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Rust Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Rust", "developer_needs": [ "documentation", "evaluation_metrics", "repo_scale_reasoning" ] }
train_00076
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
expert
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Python Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Python", "developer_needs": [ "ci_integration", "governance", "tooling" ] }
train_00077
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
intermediate
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Bash Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Bash", "developer_needs": [ "tooling", "governance", "reproducibility" ] }
train_00078
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
code
advanced
Task: code Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Java Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Java", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "tests_are_truth" ] }
train_00079
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
code
expert
Task: code Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Bash Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "reproducibility", "governance" ] }
train_00080
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
compare
advanced
Task: compare Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Bash Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Bash", "developer_needs": [ "tooling", "governance", "reproducibility" ] }
train_00081
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
agent_loop
advanced
Task: agent_loop Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: TypeScript Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "TypeScript", "developer_needs": [ "tests_are_truth", "cost_latency_tradeoffs", "evaluation_metrics" ] }
train_00082
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
advanced
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Python Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Python", "developer_needs": [ "tests_are_truth", "repo_scale_reasoning", "tooling" ] }
train_00083
2026-01-01T00:00:00
Extended context and repo-scale understanding
agent_loop
advanced
Task: agent_loop Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Bash Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "security_gates", "reproducibility" ] }
train_00084
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
eval
foundation
Task: eval Topic: SWE-bench style real-repo evaluation Difficulty: foundation Target language: Python Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "Python", "developer_needs": [ "evaluation_metrics", "documentation", "cost_latency_tradeoffs" ] }
train_00085
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
design
foundation
Task: design Topic: Tool calling, sandboxes, and CI integration Difficulty: foundation Target language: Python Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Python", "developer_needs": [ "ci_integration", "tests_are_truth", "governance" ] }
train_00086
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
foundation
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: foundation Target language: Bash Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "tests_are_truth" ] }
train_00087
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
review
expert
Task: review Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: Python Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "Python", "developer_needs": [ "evaluation_metrics", "reproducibility", "documentation" ] }
train_00088
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
compare
foundation
Task: compare Topic: Reasoning-first coding models and tunable deliberation Difficulty: foundation Target language: Rust Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "ci_integration", "tooling" ] }
train_00089
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
data_pipeline
intermediate
Task: data_pipeline Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: Rust Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Rust", "developer_needs": [ "tooling", "governance", "evaluation_metrics" ] }
train_00090
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
code
advanced
Task: code Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Go Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Go", "developer_needs": [ "evaluation_metrics", "reproducibility", "security_gates" ] }
train_00091
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
agent_loop
expert
Task: agent_loop Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: TypeScript Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "TypeScript", "developer_needs": [ "governance", "tests_are_truth", "repo_scale_reasoning" ] }
train_00092
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
intermediate
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: JavaScript Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "JavaScript", "developer_needs": [ "tests_are_truth", "tooling", "security_gates" ] }
train_00093
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
data_pipeline
intermediate
Task: data_pipeline Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Java Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Java", "developer_needs": [ "documentation", "tooling", "governance" ] }
train_00094
2026-01-01T00:00:00
Secure code generation and policy gates
compare
intermediate
Task: compare Topic: Secure code generation and policy gates Difficulty: intermediate Target language: C# Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "C#", "developer_needs": [ "ci_integration", "documentation", "reproducibility" ] }
train_00095
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
explain
intermediate
Task: explain Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: TypeScript Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "evaluation_metrics" ] }
train_00096
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
explain
intermediate
Task: explain Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Rust Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Rust", "developer_needs": [ "governance", "tests_are_truth", "security_gates" ] }
train_00097
2026-01-01T00:00:00
Secure code generation and policy gates
explain
intermediate
Task: explain Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Python Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Python", "developer_needs": [ "documentation", "ci_integration", "cost_latency_tradeoffs" ] }
train_00098
2026-01-01T00:00:00
Extended context and repo-scale understanding
data_pipeline
advanced
Task: data_pipeline Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: SQL Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "SQL", "developer_needs": [ "security_gates", "tooling", "cost_latency_tradeoffs" ] }
train_00099
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
eval
foundation
Task: eval Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: foundation Target language: Rust Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "Rust", "developer_needs": [ "documentation", "tests_are_truth", "repo_scale_reasoning" ] }
End of preview. Expand in Data Studio

Genesis AI Code 10K

Developed by: Within Us AI

Foundation dataset emphasizing tests-as-truth, agentic loops, and evaluation thinking.

Splits

  • train: 9,800
  • validation: 200

Highlights

  • Tests-as-truth supervision patterns
  • Diff-first patching
  • Agentic loops (plan→edit→test→reflect) with bounded budgets
  • Tool-call trace supervision (where present)
  • Governance/audit & policy-gate awareness

Storage format

Parquet unavailable (No module named 'pyarrow'); JSONL shards in /data.

Quick start

from datasets import load_dataset
ds = load_dataset("<YOUR_ORG_OR_USER>/Genesis AI Code 10K", split="train")
print(ds[0])
Downloads last month
6

Collection including WithinUsAI/Genesis_AI_Code_10k