Dataset Viewer
Auto-converted to Parquet Duplicate
text
stringlengths
0
624
WARNING 02-08 03:03:20 [envs.py:235] Flash Attention library "flash_attn" not found, using pytorch attention implementation
================================================================================
CONFIGURATION PARAMETERS:
================================================================================
cfg_scale_text : 5.0
data_root : data_inference/wan_i2v/
dit_root : ./weights/Wan2.1-I2V-14B-480P/
extra_module_root : weights/Stable-Video-Infinity/version-1.0/svi-shot.safetensors
lora_alpha : 1.0
max_prompts_per_sample : None
max_width : 832
num_clips : 10
num_motion_frames : 1
num_persistent_param_in_dit : 6000000000
num_steps : 50
output : videos/svi_shot/
prompt_path : /mnt/vita/scratch/vita-students/users/wuli/code/DigitalHuman/VBench/20260207_test/sample1/prompt.txt
prompt_prefix : none
prompt_repeat_times : 1
ref_image_path : /mnt/vita/scratch/vita-students/users/wuli/code/DigitalHuman/VBench/20260207_test/sample1/train_000001.jpg
ref_pad_cfg : False
ref_pad_num : -1
repeat_first_clip : False
seed_times : 42
test_samples : None
tile_size : [30, 52]
tile_stride : [15, 26]
tiled : False
train_architecture : lora
use_first_aug : False
use_first_prompt_only : True
================================================================================
Total number of cfg parameters: 27
================================================================================
Using direct paths for reference image and prompt file
Reference image: /mnt/vita/scratch/vita-students/users/wuli/code/DigitalHuman/VBench/20260207_test/sample1/train_000001.jpg
Prompt file: /mnt/vita/scratch/vita-students/users/wuli/code/DigitalHuman/VBench/20260207_test/sample1/prompt.txt
Generated 1 test scenario with 1 prompts
Loading models from: ./weights/Wan2.1-I2V-14B-480P/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth
model_name: wan_video_image_encoder model_class: WanImageEncoder
The following models are loaded: ['wan_video_image_encoder'].
Loading models from: ['./weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00001-of-00007.safetensors', './weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00002-of-00007.safetensors', './weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00003-of-00007.safetensors', './weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00004-of-00007.safetensors', './weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00005-of-00007.safetensors', './weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00006-of-00007.safetensors', './weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00007-of-00007.safetensors']
model_name: wan_video_dit model_class: WanModel
This model is initialized with extra kwargs: {'has_image_input': True, 'patch_size': [1, 2, 2], 'in_dim': 36, 'dim': 5120, 'ffn_dim': 13824, 'freq_dim': 256, 'text_dim': 4096, 'out_dim': 16, 'num_heads': 40, 'num_layers': 40, 'eps': 1e-06}
The following models are loaded: ['wan_video_dit'].
Loading models from: ./weights/Wan2.1-I2V-14B-480P/models_t5_umt5-xxl-enc-bf16.pth
model_name: wan_video_text_encoder model_class: WanTextEncoder
The following models are loaded: ['wan_video_text_encoder'].
Loading models from: ./weights/Wan2.1-I2V-14B-480P/Wan2.1_VAE.pth
model_name: wan_video_vae model_class: WanVideoVAE
The following models are loaded: ['wan_video_vae'].
Loading LoRA models from file: weights/Stable-Video-Infinity/version-1.0/svi-shot.safetensors
Adding LoRA to wan_video_dit (['./weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00001-of-00007.safetensors', './weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00002-of-00007.safetensors', './weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00003-of-00007.safetensors', './weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00004-of-00007.safetensors', './weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00005-of-00007.safetensors', './weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00006-of-00007.safetensors', './weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00007-of-00007.safetensors']).
400 tensors are updated.
Using wan_video_text_encoder from ./weights/Wan2.1-I2V-14B-480P/models_t5_umt5-xxl-enc-bf16.pth.
Using wan_video_dit from ['./weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00001-of-00007.safetensors', './weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00002-of-00007.safetensors', './weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00003-of-00007.safetensors', './weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00004-of-00007.safetensors', './weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00005-of-00007.safetensors', './weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00006-of-00007.safetensors', './weights/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00007-of-00007.safetensors'].
Using wan_video_vae from ./weights/Wan2.1-I2V-14B-480P/Wan2.1_VAE.pth.
Using wan_video_image_encoder from ./weights/Wan2.1-I2V-14B-480P/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth.
####################################################################################################
STARTING SAMPLE 1/1: train_000001
####################################################################################################
Reference image: /mnt/vita/scratch/vita-students/users/wuli/code/DigitalHuman/VBench/20260207_test/sample1/train_000001.jpg
Available prompts: 1
Video dimensions: 832x528
Processing train_000001 with 1 prompts
Generating 10 clips using the first prompt repeatedly
Created output directory for sample: videos/svi_shot/train_000001_20260208_030504
================================================================================
PROCESSING SAMPLE: train_000001
CHUNK: 1/10
PROMPT: An Amtrak train, numbered 146, travels along a set of tracks under a clear blue sky with scattered clouds, surrounded by a forested landscape.
NOTE: Using first prompt only (use_first_prompt_only=True)
================================================================================
Starting video generation...
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:09<07:33, 9.26s/it]
4%|▍ | 2/50 [00:17<06:49, 8.54s/it]
6%|β–Œ | 3/50 [00:25<06:30, 8.30s/it]
8%|β–Š | 4/50 [00:33<06:16, 8.19s/it]
10%|β–ˆ | 5/50 [00:41<06:06, 8.13s/it]
12%|β–ˆβ– | 6/50 [00:49<05:56, 8.11s/it]
14%|β–ˆβ– | 7/50 [00:57<05:48, 8.10s/it]
16%|β–ˆβ–Œ | 8/50 [01:05<05:39, 8.10s/it]
18%|β–ˆβ–Š | 9/50 [01:13<05:31, 8.09s/it]
20%|β–ˆβ–ˆ | 10/50 [01:21<05:23, 8.10s/it]
22%|β–ˆβ–ˆβ– | 11/50 [01:29<05:15, 8.10s/it]
24%|β–ˆβ–ˆβ– | 12/50 [01:38<05:08, 8.11s/it]
26%|β–ˆβ–ˆβ–Œ | 13/50 [01:46<05:00, 8.11s/it]
28%|β–ˆβ–ˆβ–Š | 14/50 [01:54<04:52, 8.11s/it]
30%|β–ˆβ–ˆβ–ˆ | 15/50 [02:02<04:44, 8.12s/it]
32%|β–ˆβ–ˆβ–ˆβ– | 16/50 [02:10<04:36, 8.12s/it]
34%|β–ˆβ–ˆβ–ˆβ– | 17/50 [02:18<04:27, 8.12s/it]
36%|β–ˆβ–ˆβ–ˆβ–Œ | 18/50 [02:26<04:19, 8.12s/it]
38%|β–ˆβ–ˆβ–ˆβ–Š | 19/50 [02:34<04:11, 8.12s/it]
40%|β–ˆβ–ˆβ–ˆβ–ˆ | 20/50 [02:43<04:03, 8.13s/it]
42%|β–ˆβ–ˆβ–ˆβ–ˆβ– | 21/50 [02:51<03:55, 8.13s/it]
End of preview. Expand in Data Studio

No dataset card yet

Downloads last month
19