CSDDSFSFSAFSAF's picture
Add files using upload-large-folder tool
d50283e verified
DATETIME=$(date '+%Y-%m-%d-%H')
RUN_NAME="timesearch-SFT-43-video-r1-data"
OUTPUT_DIR=/data/shuimu.chen/TimeSearch-R/experiment/$RUN_NAME/$DATETIME
mkdir -p $OUTPUT_DIR
export WANDB_PROJECT=TimeSearch-R-SFT
export WANDB_NAME=$RUN_NAME
export LOG_PATH=${OUTPUT_DIR}/log.txt
export DEBUG=true
export CUDA_VISIBLE_DEVICES=2,3,4,5,6,7
export NCCL_TIMEOUT=7200
export PYTHONPATH=".:$PYTHONPATH"
export SIGLIP_URL=grpc://127.0.0.1:51000
export WANDB_API_KEY="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"
# export LLM_AS_A_JUDGE_BASE=http://127.0.0.1:18901/v1
# Local training configuration
NUM_GPUS=6
MASTER_PORT=29500
echo "Local training mode: ${NUM_GPUS} GPUs on localhost:${MASTER_PORT}"
TRAIN_PATH=configs/dataset_sft.yaml
VIDEO_ROOT=/xuhongbo/shuimu.chen/LongVideoBench/videos_480p_noaudio
MODEL_BASE=/data/shuimu.chen/Qwen2.5-VL-7B-Instruct
torchrun --nproc_per_node=${NUM_GPUS} --nnodes=1 --node_rank=0 \
--master_addr=localhost --master_port=${MASTER_PORT} \
time_r1/sft.py \
--deepspeed ./scripts/zero3.json \
--output_dir $OUTPUT_DIR \
--model_name_or_path $MODEL_BASE \
--train_data_path $TRAIN_PATH \
--video_folder $VIDEO_ROOT \
--prompt_template v3 \
--tool_name_list seek_video_frames \
--total_video_tokens 10240 \
--max_frames 60 \
--min_per_frame_tokens 4 \
--max_per_frame_tokens 192 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 2 \
--dataloader_num_workers 0 \
--logging_steps 1 \
--bf16 \
--torch_dtype bfloat16 \
--data_seed 42 \
--gradient_checkpointing true \
--attn_implementation flash_attention_2 \
--learning_rate 1e-6 \
--num_train_epochs 1 \
--run_name $RUN_NAME \
--report_to wandb \
--save_steps 200 \
--save_only_model true